【題目】為推行“高中新課程改革”,某數(shù)學(xué)老師分別用“傳統(tǒng)教學(xué)”和“新課程”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗,為了比較教學(xué)效果.期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于120分者為“成績優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 7 | 5 | 4 | 3 | 1 |
乙班頻數(shù) | 1 | 2 | 5 | 5 | 7 |
(1)從以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否犯錯誤的頻率不超過0.01的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P() | 0.10 | 0.05 | 0.025 | 0.010 |
2.706 | 3.841 | 5.024 | 6.635 |
附:,其中.臨界值表如上表:
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
【答案】(1)能;(2)分布列見解析,.
【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算的數(shù)值,由此判斷出能在犯錯概率不超過0.01的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”.
(2)利用超幾何分布的分布列計算方法,計算出的分布列,進(jìn)而計算出數(shù)學(xué)期望.
(1)由統(tǒng)計數(shù)據(jù)得列聯(lián)表:
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | 8 | 17 | 25 |
成績不優(yōu)良 | 12 | 3 | 15 |
總計 | 20 | 20 | 40 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得的觀測值為,
所以能在犯錯概率不超過0.01的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”
(2)由表可知在8人中成績不優(yōu)良的人數(shù)為,則X的可能取值為0,1,2,3.
;
;
所以X的分布列為:
0 | 1 | 2 | 3 | |
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某高中學(xué)生的體能測試結(jié)果中,隨機抽取100名學(xué)生的測試結(jié)果,按體重分組得到如圖所示的頻率分布直方圖.
(1)若該校約有的學(xué)生體重不超過“標(biāo)準(zhǔn)體重”,試估計的值,并說明理由;
(2)從第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行了第二次測試,現(xiàn)從這6人中隨機抽取2人進(jìn)行日常運動習(xí)慣的問卷調(diào)查,求抽到4組的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的一個焦點為,四條直線,所圍成的區(qū)域面積為.
(1)求的方程;
(2)設(shè)過的直線與交于不同的兩點,設(shè)弦的中點為,且(為原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人用一顆均勻的骰子(一種正方體玩具,六個面分別標(biāo)有數(shù)字1,2,3,4,5,6)做拋擲游戲,并制定如下規(guī)則:若擲出的點數(shù)不大于4,則由原擲骰子的人繼續(xù)擲,否則,輪到對方擲.已知甲先擲.
(1)若共拋擲4次,求甲拋擲次數(shù)的概率分布列和數(shù)學(xué)期望;
(2)求第n次(,)由乙拋擲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)若,其中為自然對數(shù)的底數(shù),求證:函數(shù)有2個不同的零點;
(3)若對任意的,恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點,線段的中點為,為坐標(biāo)原點,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標(biāo)方程為,圓與直線交于, 兩點, 點的直角坐標(biāo)為.
(Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右兩個頂點分別為,點為橢圓上異于的一個動點,設(shè)直線的斜率分別為,若動點與的連線斜率分別為,且,記動點的軌跡為曲線.
(1)當(dāng)時,求曲線的方程;
(2)已知點,直線與分別與曲線交于兩點,設(shè)的面積為,的面積為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標(biāo),若不存在,請說明理由;
(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com