如圖,正三角形ABC的邊長(zhǎng)為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,.
(1)當(dāng)時(shí),求的大。
(2)求的面積S的最小值及使得S取最小值時(shí)的值.

(1)θ=60°;(2)當(dāng)θ=45°時(shí),S取最小值.

解析試題分析:本題主要考查正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用兩角和的正弦公式展開(kāi),解出,利用特殊角的三角函數(shù)值求角;第二問(wèn),將第一問(wèn)得到的DF和DE代入到三角形面積公式中,利用兩角和的正弦公式和倍角公式化簡(jiǎn)表達(dá)式,利用正弦函數(shù)的有界性確定S的最小值.
在△BDE中,由正弦定理得
在△ADF中,由正弦定理得.   4分
由tan∠DEF=,得,整理得,
所以θ=60°.             6分
(2)S=DE·DF=
.  10分
當(dāng)θ=45°時(shí),S取最小值.     12分
考點(diǎn):正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,有一塊正方形區(qū)域ABCD,現(xiàn)在要?jiǎng)澇鲆粋(gè)直角三角形AEF區(qū)域進(jìn)行綠化,滿足:EF=1米,設(shè)角AEF=θ,θ,邊界AE,AF,EF的費(fèi)用為每米1萬(wàn)元,區(qū)域內(nèi)的費(fèi)用為每平方米4 萬(wàn)元.

(1)求總費(fèi)用y關(guān)于θ的函數(shù).
(2)求最小的總費(fèi)用和對(duì)應(yīng)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),x∈R(其中A>0,ω>0,)的周期為π,且圖象上一個(gè)最低點(diǎn)為M.
(1)求f(x)的解析式;
(2)當(dāng)x∈時(shí),求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是否存在實(shí)數(shù)a,使得函數(shù)在閉區(qū)間上的最大值是1?若存在,求出對(duì)應(yīng)的a值?若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(2011•重慶)設(shè)函數(shù)f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函數(shù)y=f(x)的圖象按=(,)平移后得到的函數(shù)y=g(x)的圖象,求y=g(x)在(0,]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.(1)求函數(shù)的值域;(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,某建筑工地準(zhǔn)備建造一間兩面靠墻的三角形露天倉(cāng)庫(kù)堆放材料,已知已有兩面墻、的夾角為(即),現(xiàn)有可供建造第三面圍墻的材料米(兩面墻的長(zhǎng)均大于米),為了使得倉(cāng)庫(kù)的面積盡可能大,記,問(wèn)當(dāng)為多少時(shí),所建造的三角形露天倉(cāng)庫(kù)的面積最大,并求出最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知角的終邊過(guò)點(diǎn).
(1)求的值;
(2)若為第三象限角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案