【題目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面積為S,且4S=(a2+b2-c2),這三個條件中任意選擇一個,填入下面的問題中,并求解,在銳角ABC中,角ABC所對的邊分別為a,bc,函數(shù)=2sinωxcosωx+2cos2ωx的最小正周期為π,c在[0,]上的最大值,求a-b的取值范圍.注:如果選擇多個條件分別解答,那么按第一個解答計分.

【答案】三種情況,a-b的取值范圍都是

【解析】

對于①,利用正弦定理結(jié)合條件得到角C的大小,再用正弦定理用角A表示邊ab,從而得到三角函數(shù)式,進而用三角恒等變換和三角函數(shù)有界性得到結(jié)果;對于②,利用正弦定理,結(jié)合條件得到角C的大小,同①得到結(jié)果;對于③,利用余弦定理,結(jié)合條件得到角C的大小,同①得到結(jié)果.

函數(shù)=2sinωxcosωx+2cos2ωx

,

函數(shù)的最小正周期為π,則,,

[0,],

,故c=3,

若選①,acosB+bcosA=cosC,

由正弦定理得

可得

,

C為三角形內(nèi)角,則,

由正弦定理得,

,

,

因為

.

若選②,2asinAcosB+bsin2A=a,

由正弦定理得,

,

,

C為三角形內(nèi)角,則,(舍去),

由正弦定理得

,,

,

因為

.

若選③,△ABC的面積為S,且4S=(a2+b2-c2)

可得,

,

,

C為三角形內(nèi)角,則,

由正弦定理得

,

,

因為

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機構(gòu)對產(chǎn)品進行質(zhì)量檢測,并依據(jù)質(zhì)量指標Z來衡量產(chǎn)品的質(zhì)量.時,產(chǎn)品為優(yōu)等品;當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品.第三方檢測機構(gòu)在該產(chǎn)品中隨機抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標的條形圖.用隨機抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.

1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機抽取4件,求至少有1件優(yōu)等品的概率;

2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機構(gòu)對要購買的80件產(chǎn)品進行抽樣檢測,買家、企業(yè)及第三方檢測機構(gòu)就檢測方案達成以下協(xié)議:從80件產(chǎn)品中隨機抽出4件產(chǎn)品進行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔.記企業(yè)的收益為X元,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①:在平行四邊形中,,,將沿對角線折起,使,連結(jié),得到如圖②所示三棱錐.

1)證明:平面;

2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于函數(shù)的敘述正確的為( )

A.函數(shù)有三個零點

B.點(10)是函數(shù)圖象的對稱中心

C.函數(shù)的極大值點為

D.存在實數(shù)a,使得函數(shù)為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在三棱錐中,均為等腰三角形,且,

1)判斷是否成立?并給出證明;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B是拋物線上的兩點,且在x軸兩側(cè),若AB的中點為Q,分別過A,B兩點作T的切線,且兩切線相交于點P.

1)求證:直線PQ平行于x軸;

2)若直線AB經(jīng)過拋物線T的焦點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十九大明確把精準脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一,為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進行測試并打分對比,得到如下數(shù)據(jù):

生產(chǎn)方式甲

分值區(qū)間

頻數(shù)

20

30

100

40

10

生產(chǎn)方式乙

分值區(qū)間

頻數(shù)

25

35

60

50

30

其中產(chǎn)品質(zhì)量按測試指標可劃分為:指標在區(qū)間上的為特優(yōu)品,指標在區(qū)間上的為一等品,指標在區(qū)間上的為二等品.

1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計的概率;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認為“特優(yōu)品”與生產(chǎn)方式有關(guān)?

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

生產(chǎn)方式乙

3)根據(jù)打分結(jié)果對甲乙兩種生產(chǎn)方式進行優(yōu)劣比較.

附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習冊答案