已知雙曲線的方程為,則此雙曲線的焦點到漸近線的距離為
1

試題分析:根據(jù)題意,由于雙曲線的方程為,可知,則可知焦點在x軸上,漸近線方程為y=,那么化為一般式,結合點到直線的距離公式可知d,g故答案為1.
點評:解決的關鍵是熟悉雙曲線中a,bc表示其漸近線方程以及點到直線的距離公式的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線C1:,曲線C2,EF是曲線C1的任意一條直徑,P是曲線C2上任一點,則·的最小值為 (   )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,過焦點傾斜角為的直線交拋物線于,兩點,點,在拋物線準線上的射影分別是,若四邊形的面積為,則拋物線的方程為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面內,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為,曲線的極坐標方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線C的方程為y=4x,O為坐標原點,P為拋物線的準線與其對稱軸的交點,過焦點F且垂直于x軸的直線交拋物線于M、N兩點,若直線PM與ON相交于點Q,則cos∠MQN=
A.B.-C.D.-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線頂點為坐標原點,對稱軸為x軸,焦點在3x-4y-12=0上,那么拋物線方程是(  )
A.y=16xB.y=-16xC.y=12xD.y=-12x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率是,則雙曲線的漸近線方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C的兩個焦點為F1F2,點B1為其短軸的一個端點,滿足,

(1)求橢圓C的方程;
(2)過點M 做兩條互相垂直的直線l1、l2l1與橢圓交于點A、B,l2與橢圓交于點C、D,求的最小值。

查看答案和解析>>

同步練習冊答案