(2013•重慶)某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍(lán)球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍(lán)球的個數(shù),設(shè)一、二、三等獎如下:

獎級
摸出紅、藍(lán)球個數(shù)
獲獎金額
一等獎
3紅1藍(lán)
200元
二等獎
3紅0藍(lán)
50元
三等獎
2紅1藍(lán)
10元
 
其余情況無獎且每次摸獎最多只能獲得一個獎級.
(1)求一次摸獎恰好摸到1個紅球的概率;
(2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額x的分布列與期望E(x).

(1)
(2)X的分布列為

EX==4元

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

李明在10場籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場比賽相互獨(dú)立):

場次
投籃次數(shù)
命中次數(shù)
場次
投籃次數(shù)
命中次數(shù)
主場1
22
12
客場1
18
8
主場2
15
12
客場2
13
12
主場3
12
8
客場3
21
7
主場4
23
8
客場4
18
15
主場5
24
20
客場5
25
12
 
(1)從上述比賽中隨機(jī)選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率;
(3)記為表中10個命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場,記為李明在這場比賽中的命中次數(shù),比較的大小(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),質(zhì)檢部門規(guī)定的檢驗(yàn)方案是:先從這批產(chǎn)品中任取3件作檢驗(yàn),若3件產(chǎn)品都是合格品,則通過檢驗(yàn);若有2件產(chǎn)品是合格品,則再從這批產(chǎn)品中任取1件作檢驗(yàn),這1件產(chǎn)品是合格品才能通過檢驗(yàn);若少于2件合格品,則不能通過檢驗(yàn),也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨(dú)立.
(1)求這批產(chǎn)品通過檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)為125元,并且所抽取的產(chǎn)品都要檢驗(yàn),記這批產(chǎn)品的檢驗(yàn)費(fèi)為元,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分9分)一個袋子中有3個紅球和2個黃球,5個球除顏色外完全相同,甲、乙兩人先后不放回地從中各取1個球.規(guī)定:若兩人取得的球的顏色相同則甲獲勝,否則乙獲勝.
(1) 求兩個人都取到黃球的概率;
(2) 計(jì)算甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173 cm的同學(xué),求身高為176 cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩個籃球運(yùn)動員互不影響地在同一位置投球,命中率分別為,且乙投球次均未命中的概率為
(1)求乙投球的命中率;
(2)若甲投球次,乙投球次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

 
 

 
首次出現(xiàn)故障時(shí)間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤(萬元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

電視臺綜藝頻道組織的闖關(guān)游戲,游戲規(guī)定前兩關(guān)至少過一關(guān)才有資格闖第三關(guān),闖關(guān)者闖第一關(guān)成功得3分,闖第二關(guān)成功得3分,闖第三關(guān)成功得4分.現(xiàn)有一位參加游戲者單獨(dú)闖第一關(guān)、第二關(guān)、第三關(guān)成功的概率分別為、、,記該參加者闖三關(guān)所得總分為ξ.
(1)求該參加者有資格闖第三關(guān)的概率;
(2)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點(diǎn)為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個數(shù)作為x,從集合Q中隨機(jī)取一個數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案