若橢圓)和橢圓:   
)的焦點(diǎn)相同且.給出如下四個(gè)結(jié)論:
①橢圓和橢圓一定沒有公共點(diǎn);          ②;
;                     ④.
其中,所有正確結(jié)論的序號(hào)是(   )
A.②③④B.①③④C.①②④D.①②③
B

分析:利用兩橢圓有相同焦點(diǎn),可知a12-a22=b12-b22,由此可判斷①③正確;利用a1>b1>0,a2>b2>0可判斷④正確
解:由題意,a12-b12=a22-b22,∵a1>a2,∴b1>b2,∴①③正確;
又a12-a22=b12-b22,a1>b1>0,a2>b2>0,∴④正確,
故選B.
點(diǎn)評(píng):本題主要考查橢圓的幾何性質(zhì),等價(jià)轉(zhuǎn)化是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是橢圓()的兩個(gè)焦點(diǎn), 是橢圓上任意一點(diǎn),從任一焦點(diǎn)引的外角平分線的垂線,垂足為, 則點(diǎn)的軌跡   (       )     
. 圓     . 橢圓       . 雙曲線      . 拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

P是橢圓上的點(diǎn),是橢圓的焦點(diǎn),若
. 則此橢圓的離心率為(   )                                                                     
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓M:(x+1)2+y2=8,定點(diǎn)N(1,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),若Q在NP上,點(diǎn)G在MP上,且滿足
(I)求點(diǎn)G的軌跡C的方程;
(II)直線l過點(diǎn)P(0,2)且與曲線C相交于A、B兩點(diǎn),當(dāng)△AOB面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分).已知橢圓離心率,焦點(diǎn)到橢圓上
的點(diǎn)的最短距離為。
(1)求橢圓的標(biāo)準(zhǔn)方程。
(2)設(shè)直線與橢圓交與M,N兩點(diǎn),當(dāng)時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在等邊中,O為邊的中點(diǎn),D、E的高線上的點(diǎn),且,.若以A,B為焦點(diǎn),O為中心的橢圓過點(diǎn)D,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,記橢圓為M

(1)求橢圓M的方程;
(2)過點(diǎn)E的直線與橢圓M交于不同的兩點(diǎn)P,Q,點(diǎn)P在點(diǎn)E, Q
間,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

斜率為的直線與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓的焦點(diǎn)在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓的個(gè)數(shù)是                                                       (   )
A.70B.35C.30D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案