【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.
【答案】
(1)解:F(x)=2f(x)+g(x)= (a>0且a≠1)
要使函數(shù)有意義,則 ,解得﹣1<x<1,
∴函數(shù)F(x)的定義域為(﹣1,1).
令F(x)=0,則 …(*)
方程變?yōu)? ,(x+1)2=1﹣x,即x2+3x=0
解得x1=0,x2=﹣3.
經(jīng)檢驗x=﹣3是(*)的增根,∴方程(*)的解為x=0,
∴函數(shù)F(x)的零點為0
(2)解:由于函數(shù) 在定義域D上是增函數(shù).可得:
①當a>1時,由復合函數(shù)的單調(diào)性知:函數(shù)f(x)=loga(x+1),
在定義域D上是增函數(shù).
∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是增函數(shù).
②當0<a<1時,由復合函數(shù)的單調(diào)性知:
函數(shù)f(x)=loga(x+1), ,在定義域D上是減函數(shù).
∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是減函數(shù)
(3)解:問題等價于關于x的方程2m2﹣3m﹣5=F(x)在區(qū)間[0,1)內(nèi)僅有一解,
①當a>1時,由(2)知,函數(shù)F(x)在[0,1)上是增函數(shù),
∴F(x)∈[0,+∞),
∴只需2m2﹣3m﹣5≥0,
解得:m≤﹣1,或 .
②當0<a<1時,由(2)知,函數(shù)F(x)在[0,1)上是減函數(shù),
∴F(x)∈(﹣∞,0],
∴只需2m2﹣3m﹣5≤0,
解得: .
綜上所述,當0<a<1時: ;
當a>1時,m≤﹣1,或
【解析】(1)利用對數(shù)函數(shù)的定義域即可的得出,利用對數(shù)的運算法則即可得出函數(shù)的零點;(2)通過對a分類討論,利用一次函數(shù)、反比例函數(shù)、對數(shù)函數(shù)的單調(diào)性即可得出復合函數(shù)F(x)的單調(diào)性;(3)利用(2)的函數(shù)F(x)的單調(diào)性可得其值域,進而轉(zhuǎn)化為即一元二次不等式的解集.
【考點精析】掌握函數(shù)的定義域及其求法和函數(shù)單調(diào)性的判斷方法是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.
科目:高中數(shù)學 來源: 題型:
【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為( )
A.(0,1)
B.[0, )
C.(0, ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學在5次英語口語測試中的成績統(tǒng)計如圖的莖葉圖所示.
(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競賽,從兩同學的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對學生甲在今后的三次英語口語競賽成績進行預測,記這三次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a為實數(shù),若函數(shù)f(x)=|x2+ax+2|﹣x2在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的有( )
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax﹣1﹣1恒過定點(1,0);
③若存在x1 , x2∈I,當x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
④ 的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞).
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想數(shù)列{an}的通項公式an .
(2)用數(shù)學歸納法證明你猜想的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com