【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

【答案】
(1)解:F(x)=2f(x)+g(x)= (a>0且a≠1)

要使函數(shù)有意義,則 ,解得﹣1<x<1,

∴函數(shù)F(x)的定義域為(﹣1,1).

令F(x)=0,則 …(*)

方程變?yōu)? ,(x+1)2=1﹣x,即x2+3x=0

解得x1=0,x2=﹣3.

經(jīng)檢驗x=﹣3是(*)的增根,∴方程(*)的解為x=0,

∴函數(shù)F(x)的零點為0


(2)解:由于函數(shù) 在定義域D上是增函數(shù).可得:

①當a>1時,由復合函數(shù)的單調(diào)性知:函數(shù)f(x)=loga(x+1),

在定義域D上是增函數(shù).

∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是增函數(shù).

②當0<a<1時,由復合函數(shù)的單調(diào)性知:

函數(shù)f(x)=loga(x+1), ,在定義域D上是減函數(shù).

∴函數(shù)F(x)=2f(x)+g(x)在定義域D上是減函數(shù)


(3)解:問題等價于關于x的方程2m2﹣3m﹣5=F(x)在區(qū)間[0,1)內(nèi)僅有一解,

①當a>1時,由(2)知,函數(shù)F(x)在[0,1)上是增函數(shù),

∴F(x)∈[0,+∞),

∴只需2m2﹣3m﹣5≥0,

解得:m≤﹣1,或

②當0<a<1時,由(2)知,函數(shù)F(x)在[0,1)上是減函數(shù),

∴F(x)∈(﹣∞,0],

∴只需2m2﹣3m﹣5≤0,

解得:

綜上所述,當0<a<1時:

當a>1時,m≤﹣1,或


【解析】(1)利用對數(shù)函數(shù)的定義域即可的得出,利用對數(shù)的運算法則即可得出函數(shù)的零點;(2)通過對a分類討論,利用一次函數(shù)、反比例函數(shù)、對數(shù)函數(shù)的單調(diào)性即可得出復合函數(shù)F(x)的單調(diào)性;(3)利用(2)的函數(shù)F(x)的單調(diào)性可得其值域,進而轉(zhuǎn)化為即一元二次不等式的解集.
【考點精析】掌握函數(shù)的定義域及其求法和函數(shù)單調(diào)性的判斷方法是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個數(shù)a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為(
A.(0,1)
B.[0,
C.(0, ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學在5次英語口語測試中的成績統(tǒng)計如圖的莖葉圖所示.

(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競賽,從兩同學的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對學生甲在今后的三次英語口語競賽成績進行預測,記這三次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為實數(shù),若函數(shù)f(x)=|x2+ax+2|﹣x2在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個單位后,所得圖象關于y軸對稱,則φ可以為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的有(
①冪函數(shù)的圖象一定不過第四象限;
②已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax1﹣1恒過定點(1,0);
③若存在x1 , x2∈I,當x1<x2時,f(x1)<f(x2),則y=f(x)在I上是增函數(shù);
的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞).
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110)[110,120),[120,130),[130,140)[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規(guī)定分數(shù)不小于130分的學生為數(shù)學尖子生,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為數(shù)學尖子生與性別有關

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想數(shù)列{an}的通項公式an
(2)用數(shù)學歸納法證明你猜想的結論.

查看答案和解析>>

同步練習冊答案