【題目】已知圓,定點(diǎn) ,為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線

1)求曲線的方程

2)過點(diǎn)的直線交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說明理由.

【答案】1;(2)存在,.

【解析】

1)設(shè)以為直徑的圓心為,切點(diǎn)為,取關(guān)于軸的對(duì)稱點(diǎn),連接,計(jì)算得到,故軌跡為橢圓,計(jì)算得到答案.

2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到

,,計(jì)算,得到答案.

1)設(shè)以為直徑的圓心為,切點(diǎn)為,則

關(guān)于軸的對(duì)稱點(diǎn),連接,故,

所以點(diǎn)的軌跡是以為焦點(diǎn),長軸為4的橢圓,其中

曲線方程為.

2)設(shè)直線的方程為,設(shè)

直線的方程為,同理,

所以,

,

聯(lián)立

所以,

代入得,

所以點(diǎn)都在定直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,PAAB1,

1)證明:BD⊥平面PAC;

2)若EPC的中點(diǎn),F是棱PD上一點(diǎn),且BE∥平面ACF,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

2)令,是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最小值是3?若存在,求出實(shí)數(shù)的值;若不存在,說明理由;

3)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,點(diǎn)是橢圓上一點(diǎn),以為直徑的圓過點(diǎn).

1)求橢圓的方程;

2)過點(diǎn)且斜率大于0的直線的另一個(gè)交點(diǎn)為,與直線的交點(diǎn)為,過點(diǎn)且與垂直的直線與直線交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex-x2 -kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).

(1)求實(shí)數(shù)k的取值范圍;

(2)證明:f(x)的極大值不小于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F是它的一個(gè)焦點(diǎn),且過P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案