【題目】2021年起,新高考科目設(shè)置采用模式,普通高中學(xué)生從高一升高二時(shí)將面臨著選擇物理還是歷史的問(wèn)題,某校抽取了部分男、女學(xué)生調(diào)查選科意向,制作出如右圖等高條形圖,現(xiàn)給出下列結(jié)論:

①樣本中的女生更傾向于選歷史;

②樣本中的男生更傾向于選物理;

③樣本中的男生和女生數(shù)量一樣多;

④樣本中意向物理的學(xué)生數(shù)量多于意向歷史的學(xué)生數(shù)量.

根據(jù)兩幅條形圖的信息,可以判斷上述結(jié)論正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

分析條形圖,第一幅圖從性別方面看選物理歷史的人數(shù)的多少,第二幅圖從選物理歷史的人數(shù)上觀察男女人數(shù)的多少,

由圖2知樣本中的男生數(shù)量多于女生數(shù)量,由圖1有物理意愿的學(xué)生數(shù)量多于有歷史意愿的學(xué)生數(shù)量,樣本中的男生更傾向物理,女生也更傾向物理,所以②④正確,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()

A. 函數(shù)圖像的兩條相鄰對(duì)稱軸之間的距離為

B. 函數(shù)圖像關(guān)于點(diǎn)對(duì)稱

C. 函數(shù)圖像關(guān)于直線對(duì)稱

D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過(guò)焦點(diǎn)且平行于軸的弦長(zhǎng)為.點(diǎn),直線交于兩點(diǎn),

1)求拋物線的方程;

2)若不平行于軸,且為坐標(biāo)原點(diǎn)),證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解手機(jī)品牌的選擇是否和年齡的大小有關(guān),隨機(jī)抽取部分華為手機(jī)使用者和蘋果機(jī)使用者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表:

年齡 手機(jī)品牌

華為

蘋果

合計(jì)

30歲以上

40

20

60

30歲以下(含30歲)

15

25

40

合計(jì)

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根據(jù)表格計(jì)算得的觀測(cè)值,據(jù)此判斷下列結(jié)論正確的是(

A.沒(méi)有任何把握認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

B.可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

C.可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

D.可以在犯錯(cuò)誤的概率不超過(guò)0.01手機(jī)品牌的選擇與年齡大小無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)曲線,點(diǎn)為該曲線上不同的兩點(diǎn).求證:當(dāng)時(shí),直線的斜率大于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,,分別是的中點(diǎn)。

1)求證:;

2)求平面與平面所成銳二面角的大;

3)線段上是否存在一個(gè)動(dòng)點(diǎn),使得直線與平面所成角為,若存在,求線段的長(zhǎng)度,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為,,點(diǎn)為短軸的一個(gè)端點(diǎn),.

1)求橢圓C的方程;

2)如圖,過(guò)右焦點(diǎn),且斜率為k)的直線l與橢圓C相交于D,E兩點(diǎn),A為橢圓的右頂點(diǎn),直線,分別交直線于點(diǎn)MN,線段的中點(diǎn)為P,記直線的斜率為.試問(wèn)是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案