下面一組圖形為三棱錐PABC的底面與三個(gè)側(cè)面.已知ABBCPAAB,PAAC.

(1)在三棱錐PABC中,求證:平面ABC⊥平面PAB;

(2)在三棱錐PABC中,MPA的中點(diǎn),且PABC=3,AB=4,求三棱錐PMBC的體積.

答案:
解析:

  解:(1)如圖,證明:∵PAAB,PAAC,ABACA,∴PA⊥平面ABC,又∵PA平面ABP

  ∴平面ABC⊥平面PAB;6分

  (2)∵PA=3,M是PA的中點(diǎn),∴MA

  又∵AB=4,BC=3.∴VM-ABCS△ABC·MA=××4×3×=3

  又VP-ABCS△ABC·PA××4×3×3=6,∴VP-MBC=VP-ABC-VM-ABC=6-3=3;12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省紅色六校高三第二次聯(lián)考文科數(shù)學(xué)試卷 題型:解答題

下面一組圖形為三棱錐PABC的底面與三個(gè)側(cè)面.已知ABBCPAAB,PAAC.

 

 

(1)在三棱錐PABC中,求證:平面ABC⊥平面PAB;

(2)在三棱錐PABC中,MPA的中點(diǎn),且PABC=3,AB=4,求三棱錐PMBC的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7.5 直線、平面垂直的判定及其性質(zhì)(解析版) 題型:解答題

下面一組圖形為三棱錐P-ABC的底面與三個(gè)側(cè)面.已知AB⊥BC,PA⊥AB,PA⊥AC.
(1)寫出三棱錐P-ABC中的所有的線面垂直關(guān)系(不要求證明);
(2)在三棱錐P-ABC中,求證:平面ABC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省紅色六校2011-2012學(xué)年高三第二次聯(lián)考數(shù)學(xué)(文)試題 題型:解答題

 下面一組圖形為三棱錐PABC的底面與三個(gè)側(cè)面.已知ABBC,PAABPAAC.

 (1)在三棱錐PABC中,求證:平面ABC⊥平面PAB;

(2)在三棱錐PABC中,MPA的中點(diǎn),且PABC=3,AB=4,求三棱錐PMBC的體積.

 

查看答案和解析>>

同步練習(xí)冊答案