如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=30°,AB=AD=4,CD=2.將四邊形ABCD繞AD旋轉(zhuǎn)一周,則所成幾何體的體積為
(28-
20
3
3
(28-
20
3
3

(臺(tái)體的體積公式V=
1
3
(S1+
S1S2
+S2)h
分析:先過C作AD的垂線求得圓錐的旋轉(zhuǎn)半徑與高,再根據(jù)圓錐與圓臺(tái)的體積公式計(jì)算即可.
解答:解:過C作CO垂直于AD,垂足為O,
將四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體為一個(gè)圓錐與一個(gè)圓臺(tái)的組合體,
在△OCD中,∠ADC=30°,CD=2,∴OC=1,OD=
3

∴V圓錐=
1
3
×π×
3
=
3
3
π;
V圓臺(tái)=
1
3
π×(1+4+16)×(4-
3
)=28π-7
3
π.
V=V圓錐+V圓臺(tái)=28π-
20
3
3
π.
故答案是(28-
20
3
3
)π.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)體的體積.V圓錐=
1
3
πr2h;V圓臺(tái)=
1
3
π(r2+rR+R2)h.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長(zhǎng)等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BBl∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>
35
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時(shí),求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊(cè)答案