【題目】某工廠質(zhì)檢部門要對該廠流水線生產(chǎn)出的一批產(chǎn)品進(jìn)行檢驗,如果檢查到第件仍未發(fā)現(xiàn)不合格品,則此次檢查通過且認(rèn)為這批產(chǎn)品合格,如果在尚未抽到第件時已檢查到不合格品則拒絕通過且認(rèn)為這批產(chǎn)品不合格.設(shè)這批產(chǎn)品的數(shù)量足夠大,可以認(rèn)為每次檢查查到不合格品的概率都為,即每次抽查的產(chǎn)品是相互獨立的.

1)若,求這批產(chǎn)品能夠通過檢查的概率;

2)已知每件產(chǎn)品質(zhì)檢費用為50元,若,設(shè)對這批產(chǎn)品的質(zhì)檢個數(shù)記作,求的分布列;

3)在(2)的條件下,已知1000批此類產(chǎn)品,若,則總平均檢查費用至少需要多少元?(總平均檢查費用每批次平均檢查費用批數(shù))

【答案】12)詳見解析(3

【解析】

1)根據(jù),這批產(chǎn)品能夠通過檢查說明前次都通過檢查,即可得到.

(2)根據(jù)題意得到,2,3,4,分別計算概率再列出分布列即可.

(3)首先計算數(shù)學(xué)期望,令,利用導(dǎo)數(shù)求出其最小值,即可得到答案.

1)因為,記事件為“當(dāng)時,這批產(chǎn)品能夠通過檢查”,

則由題意知:.

2)由題可知,23,4

,,

,

所以的分布列為:

1

2

3

4

3)由(2)可知的數(shù)學(xué)期望為:

.

設(shè),,

因為,所以,

所以單調(diào)遞減,

所以

所以每批次平均檢查費用至少為(元)

所以1000批次此類產(chǎn)品總平均檢查費用至少需要(元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補充到題干中的橫線位置,并根據(jù)你的選擇解決問題)

I)求;

(Ⅱ)若,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進(jìn)行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,底面ABC,,D,E分別是ACPC的中點,FPB上一點,且,MPA的中點,二面角的大小為45°.

1)證明:平面AEF;

2)求直線AF與平面BCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值;

2)設(shè),若曲線在兩個不同的點,處的切線互相平行,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高一年級學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計,隨機抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率為,且過點.

1)求橢圓C的方程;

2)過坐標(biāo)原點的直線與橢圓交于M,N兩點,過點M作圓的一條切線,交橢圓于另一點P,連接,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點,ACBE相交于點O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案