【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表;

2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān)?

3)已知每例重癥患者平均治療費(fèi)用約為萬(wàn)元,每例輕癥患者平均治療費(fèi)用約為萬(wàn)元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費(fèi)用.(結(jié)果保留兩位小數(shù))

附:

【答案】1)填表見(jiàn)解析;(2)能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為:新冠肺炎重癥與吸煙有關(guān)(3)吸煙患者平均治療費(fèi)用為萬(wàn)元;非吸煙患者平均治療費(fèi)用萬(wàn)元

【解析】

1)根據(jù)已知完成列聯(lián)表;

(2)由題意得,利用獨(dú)立性檢驗(yàn)解答;

3)直接利用平均數(shù)公式求解即可.

解:(1)由題得

吸煙人數(shù)

非吸煙人數(shù)

總計(jì)

重癥人數(shù)

30

120

150

輕癥人數(shù)

100

800

900

總計(jì)

130

920

1050

2)由題意得

所以能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān).

3)吸煙患者平均治療費(fèi)用為萬(wàn),

非吸煙患者平均治療費(fèi)用為萬(wàn),

所以吸煙患者平均治療費(fèi)用為萬(wàn)元,非吸煙患者平均治療費(fèi)用萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來(lái)報(bào)廢的出租車,現(xiàn)有采購(gòu)成本分別為11萬(wàn)元/輛和8萬(wàn)元/輛的AB兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:

1)填寫如表,并判斷是否有99%的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車有關(guān)?

2)以頻率估計(jì)概率,從2020年生產(chǎn)的AB的車型中各隨機(jī)抽1車,以X表示這2車中使用壽命不低于7年的車數(shù),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)公司要求,采購(gòu)成本由出租公司負(fù)責(zé),平均每輛出租每年上交公司6萬(wàn)元,其余維修和保險(xiǎn)等費(fèi)用自理,假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這100輛出租車所產(chǎn)生的平均利潤(rùn)作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購(gòu)哪款車型?

參考公式:,其中na+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是.

1)求橢圓的方程;

2)已知直線經(jīng)過(guò)點(diǎn),且不垂直于軸,直線與橢圓交于,兩點(diǎn),的中點(diǎn),直線與橢圓交于,兩點(diǎn)(是坐標(biāo)原點(diǎn)),若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國(guó)的區(qū)塊鏈企業(yè)數(shù)量逐年增長(zhǎng),居世界前列現(xiàn)收集我國(guó)近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號(hào)

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個(gè))

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i12,n)的最小二乘法估計(jì)公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測(cè)未來(lái)幾年我國(guó)區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說(shuō)明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);

3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場(chǎng)比賽有兩個(gè)公司參加,并決出勝負(fù);②每場(chǎng)比賽獲勝的公司與未參加此場(chǎng)比賽的公司進(jìn)行下一場(chǎng)的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場(chǎng),則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪兩個(gè)公司進(jìn)行首場(chǎng)比賽時(shí),甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,正方形與梯形所在平面互相垂直,已知,,.

(1)求證:平面;

(2)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

2)若對(duì),恒成立,求實(shí)數(shù)的取值范圍;

3)證明:若,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,MNP分別是C1D1,BCA1D1的中點(diǎn),有下列四個(gè)結(jié)論:

APCM是異面直線;②AP,CM,DD1相交于一點(diǎn);③MNBD1

MN∥平面BB1D1D

其中所有正確結(jié)論的編號(hào)是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),在直線上存在點(diǎn),使三角形為正三角形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面.

1)求證:平面平面

2)若,求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案