如圖,已知AB是⊙O的直徑,直線(xiàn)CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(Ⅰ)求證:AD⊥CD;
(Ⅱ)若AD=2,AC=
5
,求AB的長(zhǎng).
分析:(Ⅰ)連接BC;根據(jù)切線(xiàn)的性質(zhì)知:OC⊥CD;推出∠DCA=∠B,利用直徑上的圓周角等關(guān)系推出,∠ADC=90°即可證明結(jié)果.
(Ⅱ)連接BC,證△ADC∽△ACB,根據(jù)相似三角形得出的對(duì)應(yīng)邊成比例線(xiàn)段,可將AB的長(zhǎng)求出.
解答:證明:(Ⅰ)連接BC.∵直線(xiàn)CD與⊙O相切于C點(diǎn),∴∠DCA=∠B,
∵AC平分∠DAB,∴∠DAC=∠CAB,
∴∠ADC=∠ACB,
∵AB是圓的直徑,∴∠ACB=90°,
∴∠ADC=90°,
∴AD⊥CD.
(Ⅱ)∵∠DCA=∠B,∠DAC=∠CAB,
∴△ADC∽△ACB,
AD
AC
=
AC
AB
,
∴AC2=AD•AB,
∵AD=2,AC=
5
,
∴AB=
5
2
點(diǎn)評(píng):本題考查了圓的切線(xiàn)性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選做題
如圖,已知AB是⊙O的直徑,AC是弦,AD⊥CE,垂足為D,AC平分∠BAD.
(Ⅰ)求證:直線(xiàn)CE是⊙O的切線(xiàn);(Ⅱ)求證:AC2=AB•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長(zhǎng)是( 。
A、3
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上的動(dòng)點(diǎn)(異于A、B),過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于⊙O所在的平面,D,E分別是VA,VC的中點(diǎn).
(1)求證:直線(xiàn)ED⊥平面VBC;
(2)若VC=AB=2BC,求直線(xiàn)EO與平面VBC所成角大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,BC是⊙O的切線(xiàn),切點(diǎn)為B,OC平行于弦AD,OA=2.
(1)求證:DC是⊙O的切線(xiàn);
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案