已知函數(shù).

(Ⅰ)若函數(shù)f(x)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

(Ⅱ)若是函數(shù)f(x)的極值點,求函數(shù)f(x)在區(qū)間上的最大值;

(Ⅲ)在(Ⅱ)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個交點?若存在,請求出b的取值范圍;若不存在,試說明理由.

 

解析:(Ⅰ),由在區(qū)間上是增函數(shù)

則當時,恒有,

在區(qū)間上恒成立。w.w.w.k.s.5.u.c.o.m    

,解得.                    4分

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。                                        9分

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點,

即方程恰有3個不等的實數(shù)根。

是方程的一個實數(shù)根,則

方程有兩個非零實數(shù)根,

.

故滿足條件的存在,其取值范圍是.                               14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆湖北孝感高中高三年級九月調(diào)研考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三上學期10月月考文科數(shù)學卷 題型:選擇題

已知函數(shù)的定義域為,部分函數(shù)值如表所示,其導函數(shù)的圖象如圖所示,若正數(shù)滿足,則的取值范圍是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分

)已知函數(shù)                                       ,(>0),若函

    數(shù)的最小正周期為

(1)求的值,并求函數(shù)的最大值;

(2)若0<x<,當f(x)=時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.

我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的定義域為,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.

我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實數(shù)的取值范圍;

(Ⅱ)已知的部分函數(shù)值由下表給出,

 求證:

(Ⅲ)定義集合

請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案