17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{x-y-1≤0}\\{y≤3}\end{array}\right.$,則z=x-3y的最大值是2.

分析 首先由不等式組畫(huà)出可行域,利用z=x-3y變形為y=$\frac{1}{3}$x$-\frac{1}{3}$z,由其的幾何意義求最大值.

解答 解:x,y滿足的平面區(qū)域如圖:
由z=x-3y得到y(tǒng)=$\frac{1}{3}$x$-\frac{1}{3}$z,
所以當(dāng)直線經(jīng)過(guò)圖中的A時(shí),z最大,
又A($\frac{1}{2},-\frac{1}{2}$),
所以z=x-3y的最大值為$\frac{1}{2}+\frac{3}{2}$=2;
故答案為:2.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題;正確畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,在區(qū)間(0,1)上單調(diào)遞增的有( 。
①f(x)=x3-2x;②f(x)=$\frac{ln|x|}{{x}^{2}}$;③f(x)=-2x2+4|x|+3.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<\frac{π}{2})$的最小正周期為π,且$f(\frac{π}{2})=-\frac{1}{2}$.
(1)求ω和ϕ的值;
(2)用五點(diǎn)法作出函數(shù)f(x)在[0,π]上的圖象;
(3)將f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍(縱坐標(biāo)不變),然后向右平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x),求g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x>0}\\{0,x=0}\\{x+1,x<0}\end{array}}$,則f(f(1))的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合A={x|-2m-1<x<m+1},集合B={x|-1≤x≤2}.
(1)若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)m的取值范圍;
(2)若x∈A是x∈B的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),有an=3an-1-2,則an=3n-1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=$\frac{{2{x^2}+x+2}}{{{x^2}+1}}$的最大值為M,最小值為N,則M+N=( 。
A.4B.0C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,有下列3個(gè)命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對(duì)于一切x∈[0,+∞)恒成立;
③函數(shù)y=f(x)-ln(x-1)在(1,+∞)上有3個(gè)零點(diǎn);
則其中所有真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)關(guān)于x的不等式x(x-a-1)<0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N.
(1)當(dāng)a=1時(shí),求集合M;
(2)若a>-1時(shí),M⊆N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案