【題目】設(shè),函數(shù).

1)若無零點(diǎn),求實(shí)數(shù)的取值范圍;

2)若有兩個相異零點(diǎn),,求證:.

【答案】(1)(2)見解析

【解析】

1)通過a的值,利用函數(shù)的導(dǎo)數(shù)的符號,結(jié)合函數(shù)的單調(diào)性,判斷函數(shù)的零點(diǎn),求解即可.(2)利用x1,x2是方程alnxx0的兩個不同的實(shí)數(shù)根.要證:,即證:,即證:構(gòu)造函數(shù)

,求出導(dǎo)函數(shù);求其最值,推出轉(zhuǎn)化證明求解即可.

1)①若,則,是區(qū)間上的減函數(shù),

,,

,則,即

,函數(shù)在區(qū)間有唯一零點(diǎn);

②若,,在區(qū)間無零點(diǎn);

③若,令,得,

在區(qū)間上,,函數(shù)是增函數(shù);

在區(qū)間上,,函數(shù)是減函數(shù);

故在區(qū)間上,的最大值為,由于無零點(diǎn),

,解得,

故所求實(shí)數(shù)的取值范圍是.

2)因?yàn)?/span>是方程的兩個不同的實(shí)數(shù)根.

兩式相減得,解得

要證:,即證:,即證:

即證,

不妨設(shè),令,只需證.

設(shè),∴;

,∴,

上單調(diào)遞減,∴,∴,

為增函數(shù),∴

恒成立,

原不等式成立,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種計(jì)算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測到的數(shù)據(jù):

1

2

3

4

5

被感染的計(jì)算機(jī)數(shù)量(臺)

10

20

39

81

160

則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量之間的關(guān)系的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)討論的單調(diào)性;

(2)若存在正數(shù),使得當(dāng),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某圓的極坐標(biāo)方程為

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,,,點(diǎn)的中點(diǎn)

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓過點(diǎn),且離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)作斜率分別為的兩條直線,分別交橢圓于點(diǎn),,且,求直線過定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動點(diǎn)在圓上,動線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了5個城市,分別收集和分析了網(wǎng)約車的兩項(xiàng)指標(biāo)數(shù),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)數(shù)

2

4

5

6

8

指標(biāo)數(shù)

3

4

4

4

5

經(jīng)計(jì)算得:,,.

(1)試求間的相關(guān)系數(shù),并利用說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)建立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為7時,指標(biāo)數(shù)的估計(jì)值;

(3)若城市的網(wǎng)約車指標(biāo)數(shù)落在區(qū)間之外,則認(rèn)為該城市網(wǎng)約車數(shù)量過多,會對城市交通管理帶來較大的影響,交通管理部門將介入進(jìn)行治理,直至指標(biāo)數(shù)回落到區(qū)間之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的指標(biāo)數(shù)為13,問:該城市的交通管理部門是否要介入進(jìn)行治理?試說明理由.

附:相關(guān)公式:,,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過橢圓的兩個焦點(diǎn)和兩個頂點(diǎn),點(diǎn)在橢圓上,且,.

(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);

(Ⅱ)過點(diǎn)的直線與圓相交于、兩點(diǎn),過點(diǎn)垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案