【題目】(2015·陜西)如圖,橢圓E:(a>b>0)經過點A(0,-1),且離心率為.
(1)求橢圓E的方程;
(2)經過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2.
【答案】
(1)
.
(2)
證明略,詳見解析.
【解析】(I)由題意知=, b=1,
綜合a2=b2+c2 , 解得a=,
所以,橢圓的方程為.
(II)由題設知,直線PQ的方程為y=k(x-1)+1(k≠2),代入,得
(1+2k2)x2-4k(k-1)x+2k(k-2)=0,
由已知△>0,,設P(x1, y1), Q(x2, y2), x1x2≠0,
x1+x2=, x1x2=,
從而直線AP與AQ的斜率之和
kAP+kAQ=+=+
化簡得.kAP+kAQ=2k+(2-k)=2k+(2-k)=2k-(2k-1)=2
【考點精析】本題主要考查了橢圓的標準方程的相關知識點,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面與此長方體的面相交,交線圍成一個正方形。
(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設的對邊分別為且為銳角,問:(1)證明: B - A = ,(2)求 sin A + sin C 的取值范圍
(1)(1)證明:
(2)(2)求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設異面直線EM與AF所成的角為,則cos的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)已知函數f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設g(x)是f(x)的導函數,評論g(x)的單調性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內恒成立,且f(x)=0在(1,+)內有唯一解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分別是線段BE,DC的中點.
(Ⅰ)求證:BE//平面ADE ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC,VAB為等比三角形,ACBC且AC=BC=,O,M分別為AB,VA的中點。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com