在數(shù)列{an}中,a1=2,an+1=3an-2n+1.
(Ⅰ)證明:數(shù)列{an-n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.
分析:(Ⅰ)由a
n+1=3a
n-2n+1.得到:
===3得到數(shù)列{a
n-n}是公比為3的等比數(shù)列;
(Ⅱ)由(1)a
n-n=(2-1)•3
n-1=3
n-1,解得a
n=3
n-1+n即可;
(Ⅲ)由a
n=3n-1+n即可得到S
n=(1+5+8+…+3n-1)+(1+2+3+…+n)求出之和即可.
解答:解:(Ⅰ)因?yàn)?span id="3tft9z9" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
=
=
=3,
所以數(shù)列{a
n-n}是公比為3的等比數(shù)列;
(Ⅱ)由(Ⅰ)得a
n-n=(2-1)•3
n-1=3
n-1;
則a
n=3
n-1+n;
(Ⅲ)所以數(shù)列{a
n}的前n項(xiàng)和
S
n=(1+5+8+…+3n-1)+(1+2+3+…+n)=
點(diǎn)評(píng):此題考查學(xué)生數(shù)列的遞推式的能力,數(shù)列求和的能力,以及等比關(guān)系的確定能力.