【題目】已知曲線,把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個(gè)結(jié)論:

1)函數(shù)上是減函數(shù);

2)當(dāng),且時(shí),,則

3)函數(shù)(其中)的最小值為.

其中正確結(jié)論的個(gè)數(shù)為( .

A.1B.2C.3D.0

【答案】C

【解析】

根據(jù)三角函數(shù)圖像的變換求解,再根據(jù)三角函數(shù)的單調(diào)區(qū)間、對(duì)稱性判斷(1)(2),求導(dǎo)分析函數(shù)的單調(diào)性與最值判斷(3)即可.

由題,.

對(duì)(1),當(dāng)時(shí),,在區(qū)間上為減函數(shù).(1)正確.

對(duì)(2),當(dāng)時(shí), ,其取最小值時(shí)的對(duì)稱軸為,.

故當(dāng)時(shí), .

.(2)正確.

對(duì)(3),代入.

.

故當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

,.在區(qū)間上的最小值為.故(3)正確.

(1)(2)(3)均正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年,新型冠狀病毒引發(fā)的疫情牽動(dòng)著億萬人的心,八方馳援戰(zhàn)疫情,眾志成城克時(shí)難,社會(huì)各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫(yī)院派出3名醫(yī)生,2名護(hù)士支援湖北,現(xiàn)從這5人中任選2人定點(diǎn)支援湖北某醫(yī)院,則恰有1名醫(yī)生和1名護(hù)士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某學(xué)校中選出名學(xué)生,統(tǒng)計(jì)了名學(xué)生一周的戶外運(yùn)動(dòng)時(shí)間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計(jì)表格.

1)寫出的值,并估計(jì)該學(xué)校人均每周的戶外運(yùn)動(dòng)時(shí)間(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)假設(shè),則戶外運(yùn)動(dòng)時(shí)長(zhǎng)為的學(xué)生中,男生人數(shù)比女生人數(shù)多的概率.

3)若,完成下列列聯(lián)表,并回答能否有90%的把握認(rèn)為“每周至少運(yùn)動(dòng)130分鐘與性別有關(guān)”?

每周戶外運(yùn)動(dòng)時(shí)間不少于130分鐘

每周戶外運(yùn)動(dòng)時(shí)間少于130分鐘

合計(jì)

合計(jì)

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 與圓相交于M,NP,Q四點(diǎn),四邊形MNPQ為正方形,△PF1F2的周長(zhǎng)為

1)求橢圓C的方程;

2)設(shè)直線l與橢圓C相交于A、B兩點(diǎn)若直線AD與直線BD的斜率之積為,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù),例如,,,對(duì)于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù),是否是“函數(shù)”;

2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?,將上述問題的所有正整數(shù)答案從小到大組成一個(gè)數(shù)列,則______;______.(注:三三數(shù)之余二是指此數(shù)被3除余2,例如“5”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若對(duì)于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線過原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線和直線的極坐標(biāo)方程;

2)若相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案