(本小題滿分12分)
已知函數(shù) (∈R).
(Ⅰ)試給出的一個值,并畫出此時函數(shù)的圖象;
(Ⅱ)若函數(shù) f (x) 在上具有單調(diào)性,求的取值范圍
(Ⅰ)略
(Ⅱ)
解析(Ⅰ)解:略 ………………… 4分
(Ⅱ)解:
化簡
① a >1時,當x ≥-1時,是增函數(shù),且≥;
當x < -1時,是增函數(shù),且.
所以,當a >1時,函數(shù)f (x) 在R上是增函數(shù).
同理可知,當a <-1時,函數(shù)f (x) 在R上是減函數(shù). ……………6分
② a =1或-1時,易知,不合題意.
③ -1< a <1時,取x = 0,得f (0) =1,取x =,由< -1,知f () =1,
所以f (0) =" f" ().
所以函數(shù)f (x) 在R上不具有單調(diào)性. …………………10分
綜上可知,a的取值范圍是. ……………… 12分
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)生產(chǎn)一種產(chǎn)品時,固定成本為5000元,而每生產(chǎn)100臺產(chǎn)品時直接消耗成本要增加2500元,市場對此商品年需求量為500臺,銷售的收入函數(shù)為R(x)=5x-x2(萬元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺)
(1)把利潤表示為年產(chǎn)量的函數(shù);
(2)年產(chǎn)量多少時,企業(yè)所得的利潤最大?
(3)年產(chǎn)量多少時,企業(yè)才不虧本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的對稱軸方程;
(2)當時,若函數(shù)有零點,求m的范圍;
(3)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知:函數(shù)是定義在上的偶函數(shù),當時,為實數(shù)).
。1)當時,求的解析式;
。2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
。3)是否存在,使得當有最大值1?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)
已知是偶函數(shù).
(Ⅰ)求實常數(shù)的值,并給出函數(shù)的單調(diào)區(qū)間(不要求證明);
(Ⅱ)為實常數(shù),解關(guān)于的不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義域為R,且對任意實數(shù)都滿足不等式的所有函數(shù)組成的集合記為M,例如,函數(shù)。
(1)已知函數(shù),證明:;
(2)寫出一個函數(shù),使得,并說明理由;
(3)寫出一個函數(shù),使得數(shù)列極限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分,每小問5分)
已知函數(shù);
(1)作出函數(shù)f(x)的圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)當時,由圖象寫出f(x)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
設(shè)函數(shù).
(1)若曲線在點處與直線相切,求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com