若數(shù)列{an}是等比數(shù)列,an>0,公比q≠1,已知lga2是lga1和1+lga4的等差中項(xiàng),且a1a2a3=1.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
1n(3-lgan)
(n∈N*),Tn=b1+b2+…+bn,求Tn
分析:(1)依題意,可求得等比數(shù)列{an}的公比q=
1
10
,首項(xiàng)a1=10,從而可求得{an}的通項(xiàng)公式;
(2)由(1)知,an=102-n,于是由裂項(xiàng)法可知,bn=
1
n
-
1
n+1
,從而可求Tn=b1+b2+…+bn
解答:解:(1)由題知2lga2=lga1+(1+lga4),即:lga22=lg10a1a4,
a22=10a1a4=10a12q3,
∵a1>0,q2>0,
∴q=
1
10
.(3分)
又a1a2a3=1,
a13q3=a13(
1
10
)
3
=1,
a13=1000,
∴a1=10,(6分)
∴an=10×(
1
10
)
n-1
=102-n,(8分)
(2)bn=
1
n(3-lgan)
=
1
n(n+1)
=
1
n
-
1
n+1
(10分)
∴Tn=b1+b2+…+bn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
(12分)
點(diǎn)評:本題考查數(shù)列的求和,著重考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式與裂項(xiàng)法求和,考查對數(shù)的運(yùn)算性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且
OA
OB
OC
,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列一些說法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足
a
2
n+1
a
2
n
=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項(xiàng)的和等于首項(xiàng)的3倍,則該等比數(shù)列的公比為-2.
其中正確的說法的序號依次是
(2)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省六安一中高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為
(k∈N*).
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修5 2.3等比數(shù)列練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}的前n項(xiàng)和為Sn=b×2n+a(a0,b0),若數(shù)列{an}是等比數(shù)例,則a、b應(yīng)滿足的條件為(   )

(A)a-b=0   (B)a-b0   (C)a+b=0   (D)a+b0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山市高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列一些說法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項(xiàng)的和等于首項(xiàng)的3倍,則該等比數(shù)列的公比為-2.
其中正確的說法的序號依次是   

查看答案和解析>>

同步練習(xí)冊答案