【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)(單位:百萬(wàn)元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤(rùn);
(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有,兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:
使用壽命 材料類型 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 個(gè)月 | 總計(jì) |
如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款新型材料?
參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .
【答案】(1) , 百萬(wàn)元;(2) 型新材料.
【解析】
(1)根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),求出最小二乘法所需要的數(shù)據(jù),可得線性回歸方程的系數(shù),再根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出的值,寫出線性回歸方程;將代入所求線性回歸方程,求出對(duì)應(yīng)的的值即可得結(jié)果; (2)求出型新材料對(duì)應(yīng)產(chǎn)品的使用壽命的平均數(shù)與型新材料對(duì)應(yīng)產(chǎn)品的使用壽命的平均數(shù),比較其大小即可得結(jié)果.
(1)由折線圖可知統(tǒng)計(jì)數(shù)據(jù)共有組,
即,,,,,,
計(jì)算可得,
所以 ,
,
所以月度利潤(rùn)與月份代碼之間的線性回歸方程為.
當(dāng)時(shí),.
故預(yù)計(jì)甲公司2019年3月份的利潤(rùn)為百萬(wàn)元.
(2)型新材料對(duì)應(yīng)產(chǎn)品的使用壽命的平均數(shù)為,型新材料對(duì)應(yīng)的產(chǎn)品的使用壽命的平均數(shù)為, 應(yīng)該采購(gòu)型新材料.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,為邊的中點(diǎn),將沿直線翻折成,設(shè)為線段的中點(diǎn).則在翻折過(guò)程中,給出如下結(jié)論:
①當(dāng)不在平面內(nèi)時(shí),平面;
②存在某個(gè)位置,使得;
③線段的長(zhǎng)是定值;
④當(dāng)三棱錐體積最大時(shí),其外接球的表面積為.
其中,所有正確結(jié)論的序號(hào)是______.(請(qǐng)將所有正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為助力湖北新冠疫情后的經(jīng)濟(jì)復(fù)蘇,某電商平臺(tái)為某工廠的產(chǎn)品開設(shè)直播帶貨專場(chǎng).為了對(duì)該產(chǎn)品進(jìn)行合理定價(jià),用不同的單價(jià)在平臺(tái)試銷,得到如下數(shù)據(jù):
單價(jià)(元/件) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(萬(wàn)件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根據(jù)以上數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若該產(chǎn)品成本是4元/件,假設(shè)該產(chǎn)品全部賣出,預(yù)測(cè)把單價(jià)定為多少時(shí),工廠獲得最大利潤(rùn)?
(參考公式:回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面為平行四邊形,,且,,是棱的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在線段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的方程有3個(gè)不等實(shí)根.
(1)求實(shí)數(shù)的取值范圍;
(2)求證:方程的3個(gè)實(shí)根之和大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的參數(shù)方程;
(2)若,直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù),當(dāng)時(shí),恒成立,求整數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com