【題目】已知函數(shù) , . 在 上有最大值9,最小值4.
(1)求實數(shù) 的值;
(2)若不等式 在 上恒成立,求實數(shù) 的取值范圍;
(3)若方程 有三個不同的實數(shù)根,求實數(shù) 的取值范圍.
【答案】
(1)解:函數(shù) 的對稱軸為 ,又 ,所以 在 上單調遞增,
,解得
(2)解: , ,令 ,則 ,
不等式 可化為 ,所以,問題等價于 在 上恒成立,
因為 ,則: ,所以:
(3)解:令 ,圖像如下:
則方程 有三個不同的實數(shù)根,等價于關于 的方程 有兩個不等根,其中一根等于1,一根大于0且小于1,或者一根大于1,一根大于0且小于1.將 整理成: ,
若一根等于1,一根大于0且小于1,將 代入得 ,此時, 只有唯一的根,不符要求,
所以,情況為:一根大于1,一根大于0且小于1,
令 ,則需滿足 ,解得 .綜上所述: 為所求
【解析】(1)由一元二次函數(shù)的性質可得該二次函數(shù)的對稱軸為x=1,故可得 f ( x ) 在 x ∈ [ 3 , 4 ] 上單調遞增,結合二次函數(shù)圖像的特點限制邊界點的函數(shù)值進而得到關于a、b的方程組,解出其值即可。(2)由(1)的結果得到f(x) 的解析式,再由題意得到F(x)的解析式。利用整體思想設t=log2 x,根據(jù)已知的x的取值范圍得出t的取值范圍,由此已知的不等式即可轉化為 k ≤ + 1 在 t ∈ [ , 2 ] 上恒成立的問題,借助二次函數(shù)在指定區(qū)間上的最值情況即可得出結果。(3)利用數(shù)形結合法結合已知條件得出方程有兩個不等根,其中一根等于1,一根大于0且小于1,或者一根大于1,一根大于0且小于1,利用二次函數(shù)根的情況限制邊界點的函數(shù)值,進而得到關于λ 的不等式組解出其取值范圍即可。
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,數(shù)列{an}滿足an=n﹣1,輸入n=4,x=3,則輸出的結果v的值為( )
A.34
B.68
C.96
D.102
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個不同的零點,則實數(shù) 的取值范圍是 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,F(xiàn)1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的兩個焦點,以坐標原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為( )
A.
B.2
C. ﹣1
D.1+
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年高一新生入學后,為了了解新生學業(yè)水平,某區(qū)對新生進行了水平測試,隨機抽取了50名新生的成績,其相關數(shù)據(jù)統(tǒng)計如下:
分數(shù)段 | 頻數(shù) | 選擇題得分24分以上(含24分) |
[40,50) | 5 | 2 |
[50,60) | 10 | 4 |
[60,70) | 15 | 12 |
[70,80) | 10 | 6 |
[80,90) | 5 | 4 |
[90,100) | 5 | 5 |
(Ⅰ)若從分數(shù)在[70,80),[80,90)的被調查的新生中各隨機選取2人進行追蹤調查,求恰好有2名新生選擇題得分不足24分的概率;
(Ⅱ)在(Ⅰ)的條件下,記選中的4名新生中選擇題得分不足24分的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測.
車間 | A | B | C |
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)當a= 時,求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù)g(x)=x2﹣2bx﹣ ,若對于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) . (Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù) ,若在[1,e]上至少存在一點x0 , 使得f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com