【題目】中國(guó)天氣網(wǎng)2016年3月4日晚六時(shí)通過(guò)手機(jī)發(fā)布的3月5日通州區(qū)天氣預(yù)報(bào)的折線圖(如圖),其中上面的折線代表可能出現(xiàn)的從高氣溫,下面的折線代表可能出現(xiàn)的最低氣溫.
(Ⅰ)指出最高氣溫與最低氣溫的相關(guān)性;
(Ⅱ)估計(jì)在10:00時(shí)最高氣溫和最低氣溫的差;
(Ⅲ)比較最低氣溫與最高氣溫方差的大。ńY(jié)論不要求證明).
【答案】(Ⅰ)正相關(guān);(Ⅱ);(Ⅲ)最高氣溫方差小于最低氣溫方差.
【解析】
試題分析:(Ⅰ)由表可知最高氣溫越高,相應(yīng)地最低氣溫也越高,可知最高氣溫與最低氣溫之間成正相關(guān);(Ⅱ)由表易得最高氣溫與最低氣溫的差為;(Ⅲ)由圖可以看出,最高氣溫曲線波動(dòng)較小,故最高氣溫方差小于最低氣溫方差.
試題解析:(Ⅰ)最高氣溫與最低氣溫之間成正相關(guān),即最高氣溫越高,相應(yīng)地最低氣溫也越高.
(Ⅱ)由圖知,10:00時(shí)可能出現(xiàn)的最高氣溫為,可能出現(xiàn)的最低氣溫為.
所以10:00時(shí)最高氣溫與最低氣溫的差為;
(Ⅲ)由圖可以看出,最高氣溫曲線波動(dòng)較小,因此最高氣溫方差小于最低氣溫方差.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校去年有1100名同學(xué)參加高考,從中隨機(jī)抽取50名同學(xué)的總成績(jī)進(jìn)行分析,在這個(gè)調(diào)查中,下列敘述錯(cuò)誤的是( )
A.總體是:1100名同學(xué)的總成績(jī)B.個(gè)體是:每一名同學(xué)
C.樣本是:50名同學(xué)的總成績(jī)D.樣本容量是:50
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(且,),是定義域是的奇函數(shù).
(1)求的值,判斷并證明當(dāng)時(shí),函數(shù)在上的單調(diào)性;
(2)已知,函數(shù),,求的值域;
(3)已知,若對(duì)于時(shí)恒成立,請(qǐng)求出最大的整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF·EC
(1)求證:P=EDF;
(2)求證:CE·EB=EF·EP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若.
(ⅰ)求實(shí)數(shù)的值;
(ⅱ)設(shè),,,當(dāng)時(shí),試比較,,的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=10,a2為整數(shù),且Sn≤S4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以一個(gè)等邊三角形的底邊所對(duì)應(yīng)的中線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周所得的幾何體是( )
A.一個(gè)圓柱B.一個(gè)圓錐C.一個(gè)圓臺(tái)D.兩個(gè)圓錐
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com