【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
【答案】(Ⅰ)證明:因為∠DAB=60°,AB=2AD,由余弦定理得BD= , 從而BD2+AD2=AB2 , 故BD⊥AD
又PD⊥底面ABCD,可得BD⊥PD
所以BD⊥平面PAD.故PA⊥BD
(Ⅱ)如圖,以D為坐標原點,AD的長為單位長,
射線DA為x軸的正半軸建立空間直角坐標系D﹣xyz,
則A(1,0,0),B(0, ,0),C(﹣1, ,0),P(0,0,1).
=(﹣1, ,0), (0, ,﹣1), (﹣1,0,0),
設平面PAB的法向量為 =(x,y,z),則
即 ,
因此可取 =( ,1, )
設平面PBC的法向量為 =(x,y,z),則 ,
即:
可取 =(0,1, ),cos< >=
故二面角A﹣PB﹣C的余弦值為:﹣ .
【解析】(Ⅰ)因為∠DAB=60°,AB=2AD,由余弦定理得BD= ,利用勾股定理證明BD⊥AD,根據(jù)PD⊥底面ABCD,易證BD⊥PD,根據(jù)線面垂直的判定定理和性質(zhì)定理,可證PA⊥BD;(Ⅱ)建立空間直角坐標系,寫出點A,B,C,P的坐標,求出向量 ,和平面PAB的法向量,平面PBC的法向量,求出這兩個向量的夾角的余弦值即可.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班50名學生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績在區(qū)間[14,16)內(nèi)規(guī)定為良好,求該班在這次百米測試中成績?yōu)榱己玫娜藬?shù);
(2)請根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x∈R,cosx=2;命題q:x∈R,x2﹣x+1>0,則下列結(jié)論中正確的是( )
A.p∨q是假命題
B.p∧q是真命題
C.(¬p)∧(¬q)是真命題
D.(¬p)∨(¬q)是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )( <ω<2),在區(qū)間(0, )上( )
A.既有最大值又有最小值
B.有最大值沒有最小值
C.有最小值沒有最大值
D.既沒有最大值也沒有最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的值是最大值為12,則 的最小值為( )
A.
B.
C.
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)當a=1時,求M∪N及N∩RM;
(2)若x∈M是x∈N的充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校隨機抽取某次高三數(shù)學模擬考試甲、乙兩班各10名同學的客觀題成績(滿分60分),統(tǒng)計后獲得成績數(shù)據(jù)的莖葉圖(以十位數(shù)字為莖,個位數(shù)字為葉),如圖所示: (Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),并比較哪個班級的客觀題平均成績更好;
(Ⅱ)從這兩組數(shù)據(jù)各取兩個數(shù)據(jù),求其中至少有2個滿分(60分)的概率;
(Ⅲ)規(guī)定客觀題成績不低于55分為“優(yōu)秀客觀卷”,以這20人的樣本數(shù)據(jù)來估計此次高三數(shù)學模擬的總體數(shù)據(jù),若從總體中任選4人,記X表示抽到“優(yōu)秀客觀卷”的學生人數(shù),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在半徑為40cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中A,B在直徑上,點C,D在圓周上、
(1)設AD=x,將矩形ABCD的面積y表示成x的函數(shù),并寫出其定義域;
(2)怎樣截取,才能使矩形材料ABCD的面積最大?并求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com