【題目】某商場(chǎng)為了解該商場(chǎng)某商品近5年日銷(xiāo)售量(單位:件),隨機(jī)抽取近5年50天的銷(xiāo)售量,統(tǒng)計(jì)結(jié)果如下:

日銷(xiāo)售量

100

150

天數(shù)

30

20

頻率

若將上表中頻率視為概率,且每天的銷(xiāo)售量相互獨(dú)立.則在這5年中:

(1)求5天中恰好有3天銷(xiāo)售量為150件的概率(用分式表示);

(2)已知每件該商品的利潤(rùn)為20元,用X表示該商品某兩天銷(xiāo)售的利潤(rùn)和(單位: 元),求X的分布列和數(shù)學(xué)期望.

【答案】(1) .

(2)分布列見(jiàn)解析;.

【解析】分析:(1) 先求得銷(xiāo)售量為150件的概率p=,然后利用二項(xiàng)分布求得其概率;

(2) X的可能取值為4000,5000,6000,分別求得其概率,寫(xiě)出分布列和數(shù)學(xué)期望.

詳解:(1)依題意5天中恰好有3天銷(xiāo)售量為150件的概率

(2) X的可能取值為4000,5000,6000.

,,

所以X的分布列為

X

4000

5000

6000

P

數(shù)學(xué)期望(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線(xiàn)BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=lnx+ +ax(a∈R),g(x)=ex+
(1)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若對(duì)于x>0,總有f(x)≤g(x).(i)求實(shí)數(shù)a的取值范圍;(ii)求證:對(duì)于x>0,不等式ex+x2﹣(e+1)x+ >2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在鈍角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且b=atanB. (Ⅰ)求A﹣B的值;
(Ⅱ)求cos2B﹣sinA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)若函數(shù)在R上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,證明:當(dāng)時(shí),

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:函數(shù)在公共定義域內(nèi),恒成立;

(3)若存在兩個(gè)不同的實(shí)數(shù),滿(mǎn)足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若曲線(xiàn)上分別存在點(diǎn)

和點(diǎn),使得是以原點(diǎn)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在軸上則

范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)證明:平面ACD⊥平面ABC;
(Ⅱ)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案