【題目】某人對東北一種松樹的生長進行了研究,收集了其高度h()與生長時間t()的相關(guān)數(shù)據(jù),選擇hmtbh=loga(t+1)來刻畫ht的關(guān)系,你認為哪個符合?并預(yù)測第8年的松樹高度.

t()

1

2

3

4

5

6

h()

0.6

1

1.3

1.5

1.6

1.7

【答案】2米

【解析】試題分析:根據(jù)表格年份與高度數(shù)據(jù)畫出散點圖,由散點圖的分布規(guī)律與特征來選擇合適函數(shù)。由散點圖,顯然選擇對數(shù)函數(shù)模型更合適。代入一個點(一般盡量選中間點,不取兩端的)求得參數(shù),得到擬合函數(shù),代入t=8,即可估測8年松樹的高度。

試題分析:據(jù)表中數(shù)據(jù)作出散點圖如圖:

由圖可以看出用一次函數(shù)模型不吻合,選用對數(shù)型函數(shù)比較合理.

(2,1)代入到h=loga(t+1)中,得1=loga3,解得a=3.h=log3(t+1).

當(dāng)t=8時,h=log3(8+1)=2,

故可預(yù)測第8年松樹的高度為2米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司從1999年的年產(chǎn)值100萬元,增加到10年后2009年的500萬元,如果每年產(chǎn)值增長率相同,則每年的平均增長率是多少?(ln(1x)x,lg20.3,ln102.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖當(dāng)輸入的x的值為04,輸出的值相等,根據(jù)該圖和下列各小題的條件解答下面的幾個問題.

(1)該程序框圖解決的是一個什么問題?

(2)當(dāng)輸入的x的值為3,求輸出的f(x)的值;

(3)要想使輸出的值最大,求輸入的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長,1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點,則第11行的實心圓點的個數(shù)是

A. 21 B. 34 C. 55 D. 89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

5

女生

10

合計

50

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點,點是橢圓上一點,且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于,兩點,若,其中為坐標原點,判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取一人抽到喜歡游泳的學(xué)生的概率為

(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;

(Ⅱ)針對問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率.

參考公式:,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一段演繹推理:直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線平面,則直線直線的結(jié)論是錯誤的,這是因為 ( )

A. 大前提錯誤 B. 小前提錯誤 C. 推理形式錯誤 D. 非以上錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長為4,求圓的方程.

查看答案和解析>>

同步練習(xí)冊答案