【題目】已知函數(shù).

(1)當a=2,求函數(shù)的極值;

(2)若函數(shù)有兩個零點,求實數(shù)a的取值范圍.

【答案】(1)見解析;(2)

【解析】

1)代入a的值,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;

2)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,結合函數(shù)的零點個數(shù)確定a的范圍即可.

(1)當a=2時,,令,解得x=1.

列表:

x

1

0

+

極小值

所以,當x=1時,有極小值沒有極大值

(2)①因為. 所以,.

時,

所以上單調(diào)遞增,只有一個零點,不合題意,

時,由,由,

所以上單調(diào)遞減,上單調(diào)遞增,

所以處取得極小值,即為最小值.

1°當時,上單調(diào)遞減,上單調(diào)遞增,

只有一個零點,不合題意;

2°當時,,故,最多有兩個零點.

注意到,令,

,使得,下面先證明;

,令,解得.

列表

x

0

+

極小值

所以,當有極小值.

所以,故,即.

因此,根據(jù)零點存在性定理知,在必存在一個零點,

又x=1也是的一個零點,則有兩個相異的零點,符合題意

3°當時,,故,最多有兩個零點.

注意到,取,

因此,根據(jù)零點存在性定理知,在必存在一個零點,

又x=1也是的一個零點,則有兩個相異的零點,符合題意.

綜上所述,實數(shù)a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù),),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)若直線被圓截得的弦長為時,求的值.

(2)直線的參數(shù)方程為為參數(shù)),若,垂足為,求點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是由非負整數(shù)組成的無窮數(shù)列,該數(shù)列前n項的最大值記為,第n項之后的各項的最小值記為,設.

1)若,是一個周期為4的數(shù)列,寫出的值;

2)設d為非負整數(shù),證明:)的充要條件是是公差為d的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,F關于原點的對稱點為P,過F軸的垂線交拋物線于M,N兩點,給出下列三個結論:

必為直角三角形;

②直線必與拋物線相切;

的面積為.其中正確的結論是___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用長度分別為的四根木條圍成一個平面四邊形,則該平面四邊形面積的最大值是____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A. 若直線平面,直線平面,則直線不一定平行于直線

B. 若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面

C. 若平面平面,則內(nèi)一定不存在直線平行于平面

D. 若平面平面,平面平面,則一定垂直于平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形中(圖1),的中點,,且,現(xiàn)將此平面四邊形沿折起,使得二面角為直二面角,得到一個多面體,為平面內(nèi)一點,且為正方形(圖2),分別為的中點.

1)求證:平面//平面;

2)在線段上是否存在一點,使得平面與平面所成二面角的余弦值為?若存在,求出線段的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不垂直的是  

A. B.

C. D.

查看答案和解析>>

同步練習冊答案