精英家教網 > 高中數學 > 題目詳情
設等比數列{an}的公比q=2,前n項的和為Sn,則
S4a3
的值為
 
分析:由等比數列的通項公式和求和公式,代入要求的式子化簡可得.
解答:解:由等比數列的求和公式和通項公式可得:
S4
a3
=
a1(1-24)
1-2
a122
=
15a1
4a1
=
15
4

故答案為:
15
4
點評:本題考查等比數列的通項公式和求和公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和為Sn,若8a2+a5=0,則下列式子中數值不能確定的是( 。
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

12、設等比數列{an}的前n項和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和為Sn,若
S6
S3
=3,則
S9
S6
=( 。
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

設等比數列{an}的前n 項和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習冊答案