【題目】如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,現(xiàn)將梯形ABCD沿OB折起如圖乙所示的四棱錐P﹣OBCD,使得PC= ,點E是線段PB上一動點.
(1)證明:DE和PC不可能垂直;
(2)當PE=2BE時,求PD與平面CDE所成角的正弦值.
【答案】
(1)證明:如圖甲所示,因為BO是梯形ABCD的高,∠BAD=45°,
所以AO=OB
因為BC=1,OD=3OA,可得OD=3,OC=
如圖乙所示,OP=OA=1,OC= ,PC= ,
所以有OP2+OC2=PC2,所以O(shè)P⊥OC
而OB⊥OP,OB∩OC=O,所以O(shè)P⊥平面OPD
又OB⊥OD,所以O(shè)B、OD、OP兩兩垂直.故以O(shè)為原點,建立空間直角坐標系(如圖),則P(0,0,1),C(1,1,0),D(0,3,0)
設(shè)E(x,0,1﹣x),其中0≤x≤1,所以 =(x,﹣3,1﹣x), =(1,1,﹣1),
假設(shè)DE和SC垂直,則 =0,有x﹣3+(1﹣x)(﹣1)=0,解得x=2,
這與0≤x≤1矛盾,假設(shè)不成立,所以DE和SC不可能垂直
(2)解:因為PE=2BE,所以 E( ,0, )
設(shè)平面CDE的一個法向量是 =(x,y,z),
因為 =(﹣1,2,0), =( ,﹣3, ),所以
取 =(2,1,5)
而 =(0,3,﹣1),所以|cos< , >= ,
所以PD與平面CDE所成角的正弦值為 .
【解析】由題可知,可以直接建立空間直角坐標線證明位置關(guān)系和計算角.(1)只要證明 =0不成立即可.(2)求出平面CDE的法向量,用向量角的余弦值來求PD與平面CDE所成角的正弦值.
【考點精析】解答此題的關(guān)鍵在于理解空間中直線與直線之間的位置關(guān)系的相關(guān)知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=2,cosB= ,點D在線段BC上.
(1)若∠ADC= π,求AD的長;
(2)若BD=2DC,△ABC的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , Sn=2an﹣n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)數(shù)列{an}中是否存在連續(xù)三項可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的三項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比為q(q≠1),等差數(shù)列{bn}的公差也為q,且a1+2a2=3a3 . (Ι)求q的值;
(II)若數(shù)列{bn}的首項為2,其前n項和為Tn , 當n≥2時,試比較bn與Tn的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f'(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且 ,則4f(x)>f'(x)的解集為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,把函數(shù)f(x)的圖象向右平移 個單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是( )
A.函數(shù)g(x)是奇函數(shù)
B.函數(shù)g(x)在區(qū)間[π,2π]上是增函數(shù)
C.函數(shù)g(x)的最小正周期是4π
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實數(shù)m使得 恒成立?若存在,求實數(shù)m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)).以點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ﹣ )=2 (Ⅰ)將直線l化為直角坐標方程;
(Ⅱ)求曲線C上的一點Q 到直線l 的距離的最大值及此時點Q的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標系原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程,并說明其表示什么軌跡.
(2)若直線的極坐標方程為sinθ﹣cosθ= ,求直線被曲線C截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com