((本小題滿分12分)
如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F(xiàn)、G分別為EB和AB的中點.

(1)求證:FD∥平面ABC;
(2)求證:AF⊥BD;
(3) 求二面角B—FC—G的正切值.
∵F、G分別為EB、AB的中點,
∴FG=EA,又EA、DC都垂直于面ABC,  FG=DC,
∴四邊形FGCD為平行四邊形,∴FD∥GC,又GC面ABC,
∴FD∥面ABC.
(2)∵AB=EA,且F為EB中點,∴AF⊥EB ① 又FG∥EA,EA⊥面ABC
∴FG⊥面ABC ∵G為等邊△ABC,AB邊的中點,∴AG⊥GC.
∴AF⊥GC又FD∥GC,∴AF⊥FD ②
由①、②知AF⊥面EBD,又BD面EBD,∴AF⊥BD.
(3)由(1)、(2)知FG⊥GB,GC⊥GB,∴GB⊥面GCF.
過G作GH⊥FC,垂足為H,連HB,∴HB⊥FC.
∴∠GHB為二面角B-FC-G的平面角.
易求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知菱形的邊長為,,.將菱形沿對角線折起,使,得到三棱錐.
(Ⅰ)若點是棱的中點,求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐P-ABC中,平面ABC, ,N為AB上一點,AB=" 4AN," M ,D ,S分別為PB,AB,BC的中點。

(1)求證:  PA//平面CDM;
(2)求證:  SN平面CDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,在正四棱柱ABCD-A1B1C1D1中,AA1 =,AB = 1,E是DD1的中點.

(I)求直線B1D和平面A1ADD1所成角的大小;
(II)求證:B1D⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
如圖,在三棱柱中,已知,側(cè)面

(1)求直線與底面ABC所成角正切值;
(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)
如圖,在棱長為a的正方體ABCD—A1B1C1D1中,E、F分別為棱AB和BC的中點,EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)試在棱B1B上找一點M,使D1M⊥平面EFB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則在內(nèi)過點B的所有直線中(    )
A.不一定存在與平行的直線B.只有兩條與平行的直線
C.存在無數(shù)條與平行的直線D.存在唯一一條與平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形ABCD為正方形,PD平面ABCD,PD=AD=2。

(1)求PC與平面PBD所成的角;
(2)在線段PB上是否存在一點E,使得平面ADE?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,點P在正方形ABCD所在平面外,PD⊥平面ABCD,PDAD,則PABD所成角的度數(shù)為            .

查看答案和解析>>

同步練習(xí)冊答案