解:(Ⅰ)集合組1具有性質(zhì)P, 所對應(yīng)的數(shù)表為:
有, 與對任意的,都至少存在一個i∈{1,2,3},有或{y}矛盾, 所以集合組不具有性質(zhì)P。 (Ⅱ)
(注:表格中的7行可以交換得到不同的表格,它們所對應(yīng)的集合組也不同) (Ⅲ)設(shè)所對應(yīng)的數(shù)表為數(shù)表M, 因為集合組為具有性質(zhì)P的集合組,所以集合組滿足條件①和②, 由條件①:, 可得對任意x∈A,都存在i∈{1,2,3,…,t}有, 所以,即第x行不全為0, 所以由條件①可知數(shù)表M中任意一行不全為0; 由條件②知,對任意的,都至少存在一個i∈{1,2,3,…,t}, 使或{y}, 所以一定是一個1一個0,即第x行與第y行的第i列的兩個數(shù)一定不同; 所以由條件②可得數(shù)表M中任意兩行不完全相同; 因為由0,1所構(gòu)成的t元有序數(shù)組共有2t個,去掉全是0的t元有序數(shù)組,共有個, 又因數(shù)表M中任意兩行都不完全相同,所以,所以t≥7, 又t=7時,由0,1所構(gòu)成的7元有序數(shù)組共有128個,去掉全是0的數(shù)組,共127個, 選擇其中的100個數(shù)組構(gòu)造100行7列數(shù)表,則數(shù)表對應(yīng)的集合組滿足條件①②,即具有性質(zhì)P,所以t=7; 因為等于表格中數(shù)字1的個數(shù), 所以,要使取得最小值,只需使表中1的個數(shù)盡可能少, 而t=7時,在數(shù)表M中, 1的個數(shù)為1的行最多7行; 1的個數(shù)為2的行最多行; 1的個數(shù)為3的行最多行; 1的個數(shù)為4的行最多行; 因為上述共有98行,所以還有2行各有5個1, 所以此時表格中最少有個1, 所以的最小值為304。 |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
a11 | a12 | … | a1m |
a21 | a22 | … | a2m |
… | … | … | … |
an1 | an2 | … | anm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com