【題目】某中學(xué)食堂定期從糧店以每噸1500元的價格購買大米,每次購進(jìn)大米需支付運(yùn)輸費(fèi) 100元.食堂每天需用大米l噸,貯存大米的費(fèi)用為每噸每天2元(不滿一天按一天計),假 定食堂每次均在用完大米的當(dāng)天購買.
(1)該食堂隔多少天購買一次大米,可使每天支付的總費(fèi)用最少?
(2)糧店提出價格優(yōu)惠條件:一次購買量不少于20噸時,大米價格可享受九五折(即原價的95%),問食堂可否接受此優(yōu)惠條件?請說明理由.

【答案】
(1)解:設(shè)每n天購一次,即購n噸,則庫存總費(fèi)用為2[n+(n﹣1)+…+2+1]=n(n+1).

則平均每天費(fèi)用y1= n=

當(dāng)且僅當(dāng)n=10時取等號.

∴該食堂隔10天購買一次大米,可使每天支付的總費(fèi)用最少


(2)解:若接受優(yōu)惠,每m天購一次,即購m噸(m≥20),

則平均每天費(fèi)用y2=

= (m∈[20,+∞)).

令f(m)=

>0,

故當(dāng)m∈[20,+∞)時,函數(shù)f(m)單調(diào)遞增,

故當(dāng)m=20時,(y2min=1451<1521.

∴食堂可接受此優(yōu)惠條件


【解析】(1)設(shè)每n天購一次,即購n噸,則庫存總費(fèi)用為2[n+(n﹣1)+…+2+1]=n(n+1).即可得到平均每天費(fèi)用y1= ,利用基本不等式即可得出最小值.(2)若接受優(yōu)惠,每m天購一次,即購m噸(m≥20),則平均每天費(fèi)用y2= .利用導(dǎo)數(shù)研究其單調(diào)性,即可得出其最小值.
【考點(diǎn)精析】掌握基本不等式在最值問題中的應(yīng)用是解答本題的根本,需要知道用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[﹣3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時,f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x﹣1 的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱A1B1C1﹣ABC,∠BCA=90°,點(diǎn)D1 , F1分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BD1與AF1所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a、b是方程2(lg x)2-lg x6+3=0的兩個實(shí)根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1,3), =(3,x).
(1)如果 ,求實(shí)數(shù)x的值;
(2)如果x=﹣1,求向量 的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,已知E為棱CC1上的動點(diǎn).
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點(diǎn),使得平面A1BD⊥平面EBD?若存在,請找出這樣的E點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,設(shè)
(1)求函數(shù)g(x)的表達(dá)式,并求函數(shù)g(x)的定義域;
(2)判斷函數(shù)g(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一高中經(jīng)過層層上報,被國家教育部認(rèn)定為2015年全國青少年足球特色學(xué)校.該校成立了特色足球隊(duì),隊(duì)員來自高中三個年級,人數(shù)為50人.視力對踢足球有一定的影響,因而對這50人的視力作一調(diào)查.測量這50人的視力(非矯正視力)后發(fā)現(xiàn)他們的視力全部介于4.75和5.35之間,將測量結(jié)果按如下方式分成6組:第一組[4.75,4.85),第二組[4.85,4.95),…,第6組[5.25,5.35],如圖是按上述分組方法得到的頻率分布直方圖.又知:該校所在的省中,全省喜愛足球的高中生視力統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名喜愛足球的高中生的視力服從正態(tài)分布N(5.01,0.0064). 參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,
P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.
(1)試評估該校特色足球隊(duì)人員在全省喜愛足球的高中生中的平均視力狀況;
(2)求這50名隊(duì)員視力在5.15以上(含5.15)的人數(shù);
(3)在這50名隊(duì)員視力在5.15以上(含5.15)的人中任意抽取2人,該2人中視力排名(從高到低)在全省喜愛足球的高中生中前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案