精英家教網 > 高中數學 > 題目詳情

命題“若A∩B=A,則AB的逆否命題是(  )

A.若A∪B≠A,則AB                   B.若A∩B≠A,則AB

C.若AB,則A∩B≠A                   D.若AB,則A∩B≠A

 

【答案】

C

【解析】

試題分析:根據逆否命題的定義,先否定原命題的條件做結論,再否定原命題的結論做條件設,就得到原命題的逆否命題.因為A∩B=A的否定即為A∩BA,則AB的否定為AB,故原命題的逆否命題,那么可知為若AB,則A∩B≠A,故選C.

考點:四種命題

點評:本題考查四種命題間的逆否關系,解題時要注意四種命題間的相互轉化,屬基礎題

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

a
,
b
c
是三個非零向量,給出以下四個命題:
①若
a
b
+|
a
||
b
|=0
,則
a
.
b
;
②若
a
2
=
b
2
,則
a
=
b
a
=-
b
;
③若|
a
+
b
|=|
a
-
b
|
,則
a
b

④若
a
b
=
a
c
,則
b
=
c

則所有正確命題的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

關于平面向量
a
b
,
c
,有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c
、
②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

關于平面向量
a
,
b
,
c
.有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c
;
②若
a
=(1,k),
b
=(-2,6)
,
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號為
②③
②③
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

關于平面向量
a
,
b
c
.有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c
;
②若
a
=(1,k),
b
=(-2,6)
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號為
②③
②③
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

關于平面向量
a
b
,
c
.有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的個數有( 。

查看答案和解析>>

同步練習冊答案