已知三棱柱的側棱與底面邊長都相等,在底面內的射影為的中心,則與底面所成角的正弦值等于( )
A. | B. | C. | D. |
B
解析試題分析:根據(jù)題意可知,ABC的中心為O,連CO并延長交AB于D,過B1作B1E⊥AB交AB的延長線于E,再過B1作B1F⊥平面ABC交平面ABC于F。
設AB=a。∵AB=AC=BC=a,O是△ABC的中心,∴CD⊥AD、AD=BD=,∴CD=
顯然有:。
∵O是在平面ABC上的射影,∴O⊥平面ABC,∴AD⊥,又AD⊥CD、CD∩=O,∴AD⊥平面,∴AD⊥。
由=a、AD=、⊥,得:!⊥平面ABC,∴⊥
由、、⊥,得:
=
∵⊥、⊥,∴∥
∵是三棱柱,∴。
由∥,得:是平行四邊形,∴=、=a顯然,有:AE=AD+DE=+a=。
∵⊥平面ABC,⊥平面ABC,∴∥,∴共面。
∵是三棱柱,∴∥平面ABC,而平面ABC∩平面=OF,∴∥OF。由∥、∥OF,得:是平行四邊形,∴==
∵⊥平面ABC,∴⊥AF。,得:sin∠==
考點:本試題考查了線面角的求解知識。
點評:對于該試題中的線面角的求解,關鍵是建立線面垂直的背景,同時根據(jù)已知的邊長和側棱長的關系式得到角度,進而求解運算,屬于難度試題。
科目:高中數(shù)學 來源: 題型:單選題
設是三個不重合的平面,l是直線,給出下列命題:
①若,則; ②若
③若l上存在兩點到的距離相等,則; ④若
其中正確的命題是( )
A.①② | B.②③ | C.②④ | D.③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積、體積分別是
A.32、 | B.16、 |
C.12、 | D.8、 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
利用斜二測畫法可以得到:
①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;
③正方形的直觀圖是正方形;④菱形的直觀圖是菱形. 以上結論正確的是( )
A.①② | B.① | C.③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,正方體ABCD-A1B1C1D1中,E、F是AB的三等分點,G、H是 CD的三等分點,M、N分別是BC、EH的中點,則四棱錐A1 -FMGN的 側視圖為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com