設(shè)a>l,函數(shù)y=|logax|的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1].定義“區(qū)間[m,n]的長度等于n-m”,若區(qū)間[m,n]長度的最小值為,則實(shí)數(shù)a的值為

[  ]

A.11

B.6

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黃岡市黃梅一中2009屆高三數(shù)學(xué)試題5(理科) 題型:044

已知點(diǎn)P在曲線C:y=(x>1)上,設(shè)曲線C在點(diǎn)P處的切線為l,若l與函數(shù)y=kx(k>0)的圖像交于點(diǎn)A,與X軸相交于B點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,設(shè)A,B的橫坐標(biāo)分別為xA,xB,記f(t)=xA·xB

(1)求函數(shù)f(t)的解析式

(2)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=f()(n≥2),設(shè)數(shù)列{bn}(n≥1,n∈N,滿足bn,求{an}和{bn}的通項(xiàng)公式

(3)在(2)的條件下,當(dāng)1<k<3時(shí),證明不等式a1+a2+a3…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省、蘭溪一中高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知函數(shù)f(x)=x-ax+(a-1)。討論函數(shù)的單調(diào)性;       

(2).已知函數(shù)f (x)=lnx,g(x)=ex.設(shè)直線l為函數(shù) yf (x) 的圖象上一點(diǎn)A(x0f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個(gè)?,若沒有,則說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分14分)已知函數(shù)f (x)=lnx,g(x)=ex

 (I)若函數(shù)φ (x) = f (x)-,求函數(shù)φ (x)的單調(diào)區(qū)間;

 (Ⅱ)設(shè)直線l為函數(shù) y=f (x) 的圖象上一點(diǎn)A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

注:e為自然對(duì)數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省杭州十四中2011-2012學(xué)年高三2月月考試題-數(shù)學(xué)(理) 題型:解答題

 

    已知函數(shù)f x)=lnx,gx)=ex

    (I)若函數(shù)φ x) = f x)-,求函數(shù)φ x)的單調(diào)區(qū)間;

    (Ⅱ)設(shè)直線l為函數(shù) yf x) 的圖象上一點(diǎn)Ax0,f x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=gx)相切.

    注:e為自然對(duì)數(shù)的底數(shù).

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案