【題目】已知函數(shù)f(x)=A cos(ωxφ)(A>0,ω>0)的部分圖象如圖所示,下面結論錯誤的是(  )

A. 函數(shù)f(x)的最小正周期為

B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個單位長度得到

C. 函數(shù)f(x)的圖象關于直線x對稱

D. 函數(shù)f(x)在區(qū)間上單調遞增

【答案】D

【解析】∵由題意可知,此函數(shù)的周期T=2(

∴解得:ω=3,可得:f(x)=Acos(3x+φ).

又∵由題圖可知f()=Acos(3×+φ)=Acos(φ﹣π)=0,

∴利用五點作圖法可得:φ﹣π=,解得:φ=,

f(x)=Acos(3x+).

∴令3x+=kπ,kZ,可解得函數(shù)的對稱軸方程為:x=,kZ,

2kπ﹣π3x+2kπ,kZ,可解得: kπ﹣xkπ﹣,kZ,

故函數(shù)的單調遞增區(qū)間為:[kπ﹣ kπ﹣],kZ.

∴對于A,函數(shù)f(x)的最小周期為,故A正確;

對于B,因為g(x)=Acos3x的圖象向右平移個單位得到y=Acos[3(x﹣]=Acos(3x﹣)=Acos(3x﹣)=Acos(3x+)=f(x),故B正確;

對于C,因為函數(shù)的對稱軸方程為:x=,kZ,令k=2,可得函數(shù)f(x)的圖象關于直線x=對稱,故C正確;

對于D,因為函數(shù)的單調遞增區(qū)間為:[kπ﹣, kπ﹣],kZ,令k=2,可得函數(shù)單調遞增區(qū)間為:[, ],故函數(shù)f(x)在區(qū)間(, )上不單調遞增,故D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,其中一個焦點與拋物線的焦點重合,點在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的左右焦點分別為,過的直線與橢圓相交于兩點,若的面積為,求以為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,滿足約束條件,求:

1的最大值.

2的最小值.

3的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.

)請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).

)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果雙曲線的離心率e,則稱此雙曲線為黃金雙曲線.有以下幾個命題:①雙曲線是黃金雙曲線;②雙曲線是黃金雙曲線;③在雙曲線 (a>0,b>0)中,F1為左焦點,A2為右頂點,B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線 (a>0,b>0)中,過右焦點F2作實軸的垂線交雙曲線于M,N兩點,O為坐標原點,若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin 2xcos 2x圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將圖象上所有點向右平移個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸方程是(  )

A. x=- B. x

C. x D. x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的正四棱柱的底面邊長為,側棱,點在棱上,

().

(1)當時,求三棱錐的體積;

(2)當異面直線所成角的大小為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 經過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求出曲線的參數(shù)方程;

(Ⅱ)若、分別是曲線上的動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.

(1)求關于的函數(shù)關系式;

(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.

查看答案和解析>>

同步練習冊答案