精英家教網 > 高中數學 > 題目詳情
設F1,F2是橢圓的兩個焦點,點P在橢圓上,且,則△F1PF2的面積為   
【答案】分析:先根據得出∠F1PF2=90°,設出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面積.
解答:解:∵∴∠F1PF2=90°,
設|PF1|=m,|PF2|=n,由橢圓的定義可知m+n=2a=4,
∴m2+n2+2nm=4a2,∴m2+n2=4a2-2nm
由勾股定理可知m2+n2=4c2,
求得mn=2,則△F1PF2的面積為1.
故答案為:1.
點評:本題主要考查了橢圓的應用、橢圓的簡單性質和橢圓的定義等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設F1,F2是橢圓的兩個焦點,F1F2=8,P是橢圓上的點,PF1+PF2=10,且PF1⊥PF2,則點P的個數是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

F1F2是橢圓的兩個焦點,P是橢圓上一點,且P到兩個焦點的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

   (1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關系。

   (2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線        m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

   (4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1,F2是橢圓的兩個焦點,以F1為圓心,且過橢圓中心的圓與橢圓的一個交點為M,若直線F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數學 來源:2010-2011學年貴州省第13次月考) 題型:選擇題

設F1,F2是橢圓的兩個焦點,P是橢圓上的點,且,

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習冊答案