(本小題滿分10分)
如圖,已知三角形的頂點為A(2, 4),B(0,-2),C(-2,3),
求:
(Ⅰ)AB邊上的中線CM所在直線的一般方程;
(Ⅱ)求△ABC的面積.
(1)2x+3y—5=0,(2)11。
解析試題分析:(Ⅰ)因為A(2,4),B(0,-2),C-2,3),所以AB的中點M(1,1),AB邊上的中線CM過點(1,1)和(-2,3),所以中線CM的斜率是k=,所以AB邊上的中線CM所在直線的一般方程2x+3y—5=0。
(2))因為A(2,4),B(0,-2),C-2,3),由兩點間的距離公式得:AB=2,又AB所在直線方程為,點C到直線AB的距離為:,所以。
考點:直線方程的求法;兩點間的距離公式;點到直線的距離公式;中點坐標(biāo)公式;斜率公式。
點評:本題是一個求直線方程和三角形的面積的題目,條件給出的是點的坐標(biāo),利用代數(shù)方法來解決幾何問題,這是解析幾何的特點,這是一個典型的數(shù)形結(jié)合的問題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓錐曲線C:,點分別為圓錐曲線C的左、右焦點,點B為圓錐曲線C的上頂點,求經(jīng)過點且垂直于直線的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足.
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點F(0, p)(p>0), 直線l : y= -p, 點P在直線l上移動,R是線段PF與x軸的交點, 過R、P分別作直線、,使, .
(1) 求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分).
求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(,-1);
(2)在y軸上的截距是-5.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com