【題目】函數(shù)f(x)的定義域?yàn)?/span>D={x|x≠0},且滿足對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

【答案】(1) f(1)=0;(2)見解析.(3){x|-15<x<17且x≠1}.

【解析】試題分析:(1)抽象函數(shù)求具體指,用賦值法;(2)根據(jù)定義求證函數(shù)的奇偶性找f(-x)f(x)的關(guān)系;(3)先利用f(4×4)=f(4)+f(4)=2得到f(x-1)<2f(|x-1|)<f(16).再根據(jù)單調(diào)性列出不等式求解即可.

(1)∵對(duì)于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2),

∴令x1x2=1,得f(1)=2f(1),∴f(1)=0.

(2)令x1x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=f(1)=0.

x1=-1,x2xf(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)為偶函數(shù).

(3)依題設(shè)有f(4×4)=f(4)+f(4)=2,

由(2)知,f(x)是偶函數(shù),∴f(x-1)<2f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函數(shù).∴0<|x-1|<16,解之得-15<x<17且x≠1.

x的取值范圍是{x|-15<x<17且x≠1}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若對(duì)任意的正實(shí)數(shù),總存在,使得,則實(shí)數(shù)的取值范圍為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中是實(shí)數(shù).

(l)若 ,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若為函數(shù)圖像上一點(diǎn),且直線相切于點(diǎn),其中為坐標(biāo)原點(diǎn),求的值;

(3) 設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為在定義域內(nèi)恒成立,則稱函數(shù)具有某種性質(zhì),簡(jiǎn)稱“函數(shù)”.當(dāng)時(shí),試問函數(shù)是否為“函數(shù)”?若是,請(qǐng)求出此時(shí)切點(diǎn)的橫坐標(biāo);若不是,清說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求在區(qū)間上零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)f(x),如果對(duì)任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,則稱f(x)為k階縮放函數(shù).
(1)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時(shí),f(x)=1+ x,求f(2 )的值;
(2)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時(shí),f(x)= ,求證:函數(shù)y=f(x)﹣x在(1,+∞)上無零點(diǎn);
(3)已知函數(shù)f(x)為k階縮放函數(shù),且當(dāng)x∈(1,k]時(shí),f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為, , ,對(duì)每個(gè)正整數(shù),之間插入個(gè)3,得到一個(gè)新的數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,若對(duì)于任意的,都有,且時(shí),有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對(duì)照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中, ).

查看答案和解析>>

同步練習(xí)冊(cè)答案