【題目】如圖所示,某橋是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2 m,水面寬4 m.
(1)水位下降1 m后,計算水面寬多少米?
(2)已知經(jīng)過上述拋物線焦點且斜率為2的直線交拋物線于A、B兩點,求A、B兩點間的距離.
【答案】(1)(2)10
【解析】
(1)先建立直角坐標(biāo)系,設(shè)拋物線方程為,將點(-2,-2)代入拋物線方程求得p,得到拋物線方程,再把y=﹣3代入拋物線方程求得x0進而得到答案.
(2)先由焦點坐標(biāo)及斜率為2得到直線方程,聯(lián)立方程,
得,有,代入弦長公式,即可求解.
(1)以拱頂為坐標(biāo)原點建立直角坐標(biāo)系,水平向右為x軸正方向,豎直向上為y軸正方向.設(shè)拋物線方程為,
將點(-2,-2)代入解得=,
,
代入得,
水面寬為m.
(2)拋物線方程為,焦點(),
即直線方程為,
聯(lián)立方程,
得,
有,
焦點在y軸負(fù)半軸,由焦點弦公式得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出與銷售額 (單位:萬元)具有較強的相關(guān)性,且兩者之間有如下對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
28 | 36 | 52 | 56 | 78 |
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的線性回歸方程,當(dāng)廣告費支出為10萬元時,預(yù)測銷售額是多少?
參考數(shù)據(jù): ,,。
附:回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩人約定在20∶00到21∶00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨立的,在20∶00至21∶00各時刻相見的可能性是相等的,則他們兩人在約定時間內(nèi)相見的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米兩斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=4(單位:升),則輸入k的值為( 。
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
()求的取值范圍.
()記兩個極值點, ,且,已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且截拋物線的準(zhǔn)線所得弦長為.
(1)求該橢圓的方程;
(2)若過點的直線與橢圓相交于, 兩點,且點恰為弦的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某果農(nóng)選取一片山地種植紅柚,收獲時,該果農(nóng)隨機選取果樹20株作為樣本測量它們每一株的果實產(chǎn)量(單位:),獲得的所有數(shù)據(jù)按照區(qū)間,,,進行分組,得到頻率分布直方圖如圖。已知樣本中產(chǎn)量在區(qū)間上的果樹株數(shù)是產(chǎn)量在區(qū)間上的果樹株數(shù)的倍。
(1)求的值;
(2)求樣本的平均數(shù)和中位數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個動點到點的距離比到直線的距離多1.
(1)求動點的軌跡的方程;
(2)若過點的直線與曲線交于兩點,且線段中點是點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com