給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:

首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;

然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至經(jīng)N組(余差為rN)把這些數(shù)全部分完為止.

1)判斷r1r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù);

2)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明

3)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明:N£11.

 

答案:
解析:

(1)r1£r2£…£rN.除第N組外的每組至少含有個(gè)數(shù)

(2)當(dāng)?shù)?i>n組形成后,因?yàn)?i>n<N,所以還有數(shù)沒分完,這時(shí)余下的每個(gè)數(shù)必大于差rn,余下數(shù)之和也大于等于n組后的余差rn,即

由此可得r1+r2+…+rn-1>150n-L

因?yàn)?n-1)rn-1³r1+r2+…+rn-1,所以

(3)用反證法證明結(jié)論,假設(shè)N>11,即第11組形成后,還有數(shù)沒分完,由(1)和(2)可知,余下的每個(gè)數(shù)都大于第11組的余差r11,且r11³r10

故余下的每個(gè)數(shù)>r11³r10>     (*)

因?yàn)榈?1組數(shù)中至少含有3個(gè)數(shù),所以第11組數(shù)之和大于37.5´3=112.5

此時(shí)第11組的余差r11=150-第11組數(shù)之和<150-112.5=37.5

這與(*)式中r11>37.5矛盾,所以N£11.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(Ⅰ)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù);
(Ⅱ)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明rn-1
150n-Ln-1

(Ⅲ)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明:N≤11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1 275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:?

首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;?

然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rn)把這些數(shù)全部分完為止.?

(1)判斷r1,r2,…,rn的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù);?

(2)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明

(3)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明N≤11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京 題型:解答題

給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:
首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;
然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(I)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù)
(II)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明rn-1
150n-L
n-1

(III)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明:N≤11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年北京市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:
首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;
然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(I)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù)
(II)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明
(III)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明:N≤11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年北京市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給定有限個(gè)正數(shù)滿足條件T:每個(gè)數(shù)都不大于50且總和L=1275.現(xiàn)將這些數(shù)按下列要求進(jìn)行分組,每組數(shù)之和不大于150且分組的步驟是:
首先,從這些數(shù)中選擇這樣一些數(shù)構(gòu)成第一組,使得150與這組數(shù)之和的差r1與所有可能的其他選擇相比是最小的,r1稱為第一組余差;
然后,在去掉已選入第一組的數(shù)后,對(duì)余下的數(shù)按第一組的選擇方式構(gòu)成第二組,這時(shí)的余差為r2;如此繼續(xù)構(gòu)成第三組(余差為r3)、第四組(余差為r4)、…,直至第N組(余差為rN)把這些數(shù)全部分完為止.
(I)判斷r1,r2,…,rN的大小關(guān)系,并指出除第N組外的每組至少含有幾個(gè)數(shù)
(II)當(dāng)構(gòu)成第n(n<N)組后,指出余下的每個(gè)數(shù)與rn的大小關(guān)系,并證明
(III)對(duì)任何滿足條件T的有限個(gè)正數(shù),證明:N≤11.

查看答案和解析>>

同步練習(xí)冊(cè)答案