已知實數(shù)4,m,9構(gòu)成一個等比數(shù)列,則圓錐曲線x2+
y2
m
=1
的離心率為( 。
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7
∵實數(shù)4,m,9構(gòu)成一個等比數(shù)列,∴m2=4×9,解得m=±6.
①當m=6時,圓錐曲線為x2+
y2
6
=1
表示橢圓,其中a2=6,b2=1,∴離心率e=
c
a
=
1-(
b
a
)2
=
1-
1
6
=
30
6
;
②當m=-6時,圓錐曲線為x2-
y2
6
=1
表示雙曲線,其中a2=1,b2=6,∴離心率e=
c
a
=
1+(
b
a
)2
=
1+6
=
7

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓ax2+by2=1與直線x+y-1=0相交于A,B兩點,C是AB的中點,若|AB|=2
2
,OC
的斜率為
2
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程ax2+by2=ab和ax+by+c=0,其中,ab≠0,a≠b,c>0,它們所表示的曲線可能是下列圖象中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P點在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為
4
5
3
2
5
3
,過P作長軸的垂線恰好過橢圓的右焦點,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1的兩個焦點為F1,F2
,點M在橢圓上,
MF1
MF2
等于-2,則△F1MF2的面積等于( 。
A.1B.
2
C.2D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P為橢圓C:
x2
4
+
y2
3
=1上動點,F(xiàn)1,F(xiàn)2分別是橢圓C的焦點,則|PF1|-|PF2|的最大值為(  )
A.2B.3C.2
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P在橢圓
x2
25
+
y2
9
=1
上,F(xiàn)1,F(xiàn)2為兩個焦點,若△F1PF2為直角三角形,這樣的點P共有(  )
A.4個B.5個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知集合A={x|-2≤x≤10,x∈Z},m,n∈A,方程
x2
m
+
y2
n
=1
表示焦點在x軸上的橢圓,則這樣的橢圓共有______個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C短軸的一個端點為(0,1),離心率為
2
2
3

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)直線y=x+m交橢圓C于A、B兩點,若|AB|=
6
3
5
,求m.

查看答案和解析>>

同步練習(xí)冊答案