【題目】已知定義在R上的函數(shù)f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)1(2)[-5,+∞).
【解析】
(1)根據(jù)絕對(duì)值定義分類討論,通過解一元二次方程得x的值;(2)先根據(jù)平方關(guān)系化簡(jiǎn)不等式,并變量分離為對(duì)應(yīng)函數(shù)最值問題,最后根據(jù)指數(shù)函數(shù)單調(diào)性的最值,即得實(shí)數(shù)m的取值范圍.
解 (1)當(dāng)x<0時(shí),f(x)=0,無解;
當(dāng)x≥0時(shí),f(x)=2x-,
由2x-=,得2·22x-3·2x-2=0,
看成關(guān)于2x的一元二次方程,解得2x=2或-,
∵2x>0,∴x=1.
(2)當(dāng)t∈[1,2]時(shí),2t+m≥0,
即m(22t-1)≥-(24t-1),
∵22t-1>0,∴m≥-(22t+1),
∵t∈[1,2],∴-(22t+1)∈[-17,-5],
故m的取值范圍是[-5,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若銷量與單價(jià)服從線性相關(guān)關(guān)系,求該回歸方程;
(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤(rùn)。
附:對(duì)于一組數(shù)據(jù),,……,
其回歸直線的斜率的最小二乘估計(jì)值為;
本題參考數(shù)值:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, 在上,且面.
(1)求證: 是的中點(diǎn);
(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程在上有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個(gè)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中,已知公差, ,且, , 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求.
【答案】(1);(2)100
【解析】試題分析:(1)根據(jù)題意, , 成等比數(shù)列得得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論
解析:(1)由題意可得,則, ,
,即,
化簡(jiǎn)得,解得或(舍去).
∴.
(2)由(1)得時(shí),
由,得,由,得,
∴
.
∴.
點(diǎn)睛:對(duì)于數(shù)列第一問首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問前n項(xiàng)的絕對(duì)值的和問題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論
【題型】解答題
【結(jié)束】
18
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為。
(1)記甲擊中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望;
(2)求乙至多擊目標(biāo)2次的概率;
(3)求甲恰好比乙多擊中目標(biāo)2次的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若曲線在點(diǎn)處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;
若時(shí),總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
(I)求關(guān)于的線性回歸方程;
(II)利用(I)中所求的線性回歸方程,分析該地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2018年農(nóng)村居民家庭人均純收入.
參考公式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com