【題目】在任意三角形ABC內(nèi)任取一點Q,使S△ABQ≥ S△ABC的概率為
【答案】
【解析】解:分別取CA、CB點D、E,且 = = ,連接DE ∴DE上一點到AB的距離等于C到AB距離的 ,
設C到AB的距離為h,則當動點P位于線段DE上時,
△QAB的面積S= AB h= S△ABC= S
因此,當點Q位于△ABC內(nèi)部,且位于線段DE上方時,△QAB的面積大于 S.
∵△CDE∽△CAB,且相似比 =
∴S△CDE:S△ABC=
由此可得△PAB的面積大于 S的概率為P= .
所以答案是: .
【考點精析】通過靈活運用幾何概型,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令(),如果對任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
(Ⅱ)設bn=3n ,求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[50,70)的汽車大約( )
A.60輛
B.80輛
C.100輛
D.120輛
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后隨機投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點數(shù),y表示第2枚骰子出現(xiàn)的點數(shù),
(1)求點P(x,y)在直線y=x﹣1上的概率;
(2)求點P(x,y)滿足y2<4x的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一舉行了一次數(shù)學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計本次競賽學生成績的中位數(shù)和平均分;
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中至少有一人得分在[90,100]內(nèi)的頻率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.
⑴求橢圓C的標準方程;
⑵已知點A、B為動直線與橢圓C的兩個交點,問:在x軸上是否存在定點E,使得為定值?若存在,試求出點E的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左右頂點分別為,右焦點為,焦距為,點是橢圓C上異于兩點的動點, 的面積最大值為.
(1)求橢圓C的方程;
(2)若直線與直線交于點,試判斷以為直徑的圓與直線的位置關系,并作出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com