【題目】已知橢圓的離心率為,它的一個(gè)頂點(diǎn)A與拋物線的焦點(diǎn)重合.
1求橢圓C的方程;
2是否存在直線l,使得直線l與橢圓C交于M,N兩點(diǎn),且橢圓C的右焦點(diǎn)F恰為的垂心三條高所在直線的交點(diǎn)?若存在,求出直線l的方程:若不存在,說明理由.
【答案】(1);(2)見解析
【解析】
(1)因?yàn)闄E圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,所以,又因?yàn)殡x心率為,可求出,的值,得到橢圓方程.
(2)先假設(shè)存在直線與橢圓交于、兩點(diǎn),且橢圓的右焦點(diǎn)恰為的垂心.設(shè)出,坐標(biāo),由(1)中所求橢圓方程,可得,點(diǎn)坐標(biāo),利用若為的垂心,則,就可得到含,,,的等式,再設(shè)方程為,代入橢圓方程,由已知條件能求出結(jié)果.
解:1橢圓的離心率為,它的一個(gè)頂點(diǎn)A與拋物線的焦點(diǎn)重合.
拋物線的焦點(diǎn)坐標(biāo)為,
由已知得,再由,
解得,
橢圓方程為.
2設(shè),,,,
,是垂心,
設(shè)MN的方程為,
代入橢圓方程后整理得:
,
將代入橢圓方程后整理得:,
,是垂心,,
,,,
整理得:,
,
或舍
存在直線l,其方程為使題設(shè)成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)試求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次文藝匯演為,要將A,B,C,D,E,F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
節(jié)目 |
如果A,B兩個(gè)節(jié)目要相鄰,且都不排在第3號位置,那么節(jié)目單上不同的排序方式有
A. 192種B. 144種C. 96種D. 72種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:
男生 | 女生 | 總計(jì) | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計(jì) | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別無關(guān)”
B.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別有關(guān)”
C.有99.9%的把握認(rèn)為“身高與性別無關(guān)”
D.有99.9%的把握認(rèn)為“身高與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月智能共享單車項(xiàng)目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車”每30分鐘收費(fèi)元不足30分鐘的部分按30分鐘計(jì)算;“小黃車”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車點(diǎn)租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,,三人租車時(shí)間都不會超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;
2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為(是參數(shù)),圓的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)對恒成立,求實(shí)數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若,判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com