【題目】已知函數(shù).
Ⅰ當時,取得極值,求的值并判斷是極大值點還是極小值點;
Ⅱ當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.
【答案】(Ⅰ),為極大值點(Ⅱ).
【解析】
(Ⅰ)求出函數(shù)的導數(shù),求出a的值,得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值點即可;
(Ⅱ)求出函數(shù)極值點,問題轉(zhuǎn)化為[2lnx1]>0,根據(jù)0<x1<1時,0.1<x1<2時,0.即h(x)=2lnx(0<x<2),通過討論t的范圍求出函數(shù)的單調(diào)性,從而確定t的范圍即可.
(Ⅰ),,則
從而,所以時,,為增函數(shù);
時,,為減函數(shù),所以為極大值點.
(Ⅱ)函數(shù)的定義域為,有兩個極值點
,,則在上有兩個不等的正實根,所以,
由可得
從而問題轉(zhuǎn)化為在,且時成立.
即證成立.
即證 即證
亦即證 . ①
令則
1)當時,,則在上為增函數(shù)且,①式在上不成立.
2)當時,
若,即時,,所以在上為減函數(shù)且,
、在區(qū)間及上同號,故①式成立.
若,即時,的對稱軸,
令,則時,,不合題意.
綜上可知:滿足題意.
科目:高中數(shù)學 來源: 題型:
【題目】在十九大“建設美麗中國”的號召下,某省級生態(tài)農(nóng)業(yè)示范縣大力實施綠色生產(chǎn)方案,對某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機在這兩種方案中各任意抽取了40件產(chǎn)品作為樣本逐件稱出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。
產(chǎn)品重量 | 甲方案頻數(shù) | 乙方案頻數(shù) |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根據(jù)上表數(shù)據(jù)求甲(同組中的重量值用組中點數(shù)值代替)方案樣本中40件產(chǎn)品的平均數(shù)和中位數(shù)
(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認為“產(chǎn)品是否為合格品與改良方案的選擇有關”.
甲方案 | 乙方案 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
參考公式:,其中.
臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是的導函數(shù)的圖象,對于下列四個判斷,其中正確的判斷是( ).
A.在上是增函數(shù);
B.當時,取得極小值;
C.在上是增函數(shù)、在上是減函數(shù);
D.當時,取得極大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2-9x+2.
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 求函數(shù)在區(qū)間[-2,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設過點的直線與橢圓相交另一點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在底面是菱形的四棱錐中,.
(1)證明:平面;
(2)點在棱上.
①如圖1,若點是線段的中點,證明:平面;
②如圖2,若,在棱上是否存在點,使得平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016高考新課標II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com