已知定義在的函數(shù),在處的切線斜率 為
(Ⅰ)求及的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
解:
(Ⅰ)
由題可知 ,易知,
令 ,則,則 為增函數(shù)所以為的唯一解.
令
可知的減區(qū)間為()
同理增區(qū)間為(),()
(Ⅱ)令
注:此過程為求最小值過程,方法不唯一,只要論述合理就給分,
若則,在為增函數(shù),
則滿足題意;
若則
因?yàn)?sub>,
則對(duì)于任意,必存在,使得
必存在使得則在為負(fù)數(shù),
在為減函數(shù),則矛盾,
注:此過程為論述當(dāng)時(shí)存在減區(qū)間,方法不唯一,只要論述合理就給分;
綜上所述 注:若有同學(xué)論述在為增函數(shù),并求,所以,相當(dāng)于利用圖象解題扣3分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
f(n) |
1 |
2n |
4 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林市高三三模(期末)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知定義在的函數(shù),在處的切線斜率為
(Ⅰ)求及的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com