已知點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),是圓C:的兩條切線(xiàn),A、B是切點(diǎn),若四邊形的最小面積是2,則的值為?
.

試題分析:利用切線(xiàn)的性質(zhì),建立四邊形PACB的面積與切線(xiàn)長(zhǎng)PA的關(guān)系式,根據(jù)四邊形PACB面積的最小值可以得到PA的最小值,再利用PA與CP之間的關(guān)系可以得到CP的最小值,而CP的最小值即圓心C到直線(xiàn)的距離,從而可以建立關(guān)于k的方程求得k的值.
C:,圓心,半徑為1;     2分
如圖,∵,∴       4分

         6分
又∵,∴
即點(diǎn)C到直線(xiàn)的距離為        8分 
,        11分
解得:(負(fù)舍)        12分
        13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)l:y=x+m,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線(xiàn)l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(2)若直線(xiàn)l關(guān)于x軸對(duì)稱(chēng)的直線(xiàn)為lˊ,問(wèn)直線(xiàn)lˊ與拋物線(xiàn)C:是否相切?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線(xiàn)ax+by=1過(guò)點(diǎn)M(cos α,sin α),則(  )
A.a(chǎn)2+b2≥1B.a(chǎn)2+b2≤1
C.≤1D.≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,AD,AE,BC分別與圓O切于點(diǎn)D,E,F(xiàn),延長(zhǎng)AF與圓O交于另一點(diǎn)G.給出下列三個(gè)結(jié)論:

①AD+AE=AB+BC+CA;
②AF·AG=AD·AE;
③△AFB∽△ADG.
其中正確結(jié)論的序號(hào)是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2014·珠海聯(lián)考]已知兩點(diǎn)A(-2,0),B(0,2),點(diǎn)C是圓x2+y2-2x=0上任意一點(diǎn),則△ABC面積的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2014·湖北模擬]若直線(xiàn)y=x+b與曲線(xiàn)y=3-有公共點(diǎn),則b的取值范圍是(  )
A.[1-2,1+2]B.[1-,3]
C.[-1,1+2]D.[1-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)P是圓上的動(dòng)點(diǎn),Q是直線(xiàn)上的動(dòng)點(diǎn),則的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P是直線(xiàn)3+4+8=0上的動(dòng)點(diǎn),PA、PB是圓=0的兩切線(xiàn),A、B是切點(diǎn),C是圓心,那么四邊形PACB面積的最小值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓:和圓:交于A、B兩點(diǎn),則AB的垂直平分線(xiàn)的方程是(     ).
A.    B.   C.     D.

查看答案和解析>>

同步練習(xí)冊(cè)答案